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Abstract
Background: Large-scale climatic variability has been implicated in the population dynamics of
many vertebrates throughout the Northern Hemisphere, but has not been demonstrated to
directly influence dynamics at multiple trophic levels of any single system. Using data from Isle
Royale, USA, comprising time series on the long-term dynamics at three trophic levels (wolves,
moose, and balsam fir), we analyzed the relative contributions of density dependence, inter-specific
interactions, and climate to the dynamics of each level of the community.

Results: Despite differences in dynamic complexity among the predator, herbivore, and vegetation
levels, large-scale climatic variability influenced dynamics directly at all three levels. The strength of
the climatic influence on dynamics was, however, strongest at the top and bottom trophic levels,
where density dependence was weakest.

Conclusions: Because of the conflicting influences of environmental variability and intrinsic
processes on population stability, a direct influence of climate on the dynamics at all three levels
suggests that climate change may alter stability of this community. Theoretical considerations
suggest that if it does, such alteration is most likely to result from changes in stability at the top or
bottom trophic levels, where the influence of climate was strongest.

Background
Early recognition of the contrast between the stabilizing

influences of density-dependent population regulation,

and potentially de-stabilizing influences of environmen-

tal variation [1], laid a foundation for theoretical mode-

ling of population stability in stochastic environments

[2] that assumes renewed relevance in light of current

developments in ecology and climate research [3]. Re-

cently, for instance, numerous studies have documented

the influences of global-scale climatic variation on the

population dynamics of vertebrates in widely diverse ec-

osystems (see, e.g., [4,5] for reviews), including species

interactions at the community level [6–8]. To our knowl-

edge, however, no study has yet documented a simulta-

neous and direct influence of large-scale climate on the

dynamics at all trophic levels in a single system. Such a

pervasive influence could pose consequences for the per-

sistence of biological communities if the climatic influ-

ence at any trophic level (or multiple levels) were strong

enough to alter its dynamical stability [3].
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Here, we use empirical data on a three-trophic level sys-

tem involving predators, herbivores, and vegetation, and

a community-level model, to test for the influences of cli-

mate on the dynamics at and among individual trophic
levels, while simultaneously accounting for the roles of

intrinsic (density-dependent) and interspecific interac-

tions. Previously, we identified correlations between

large-scale variation in winter climate, the North Atlan-

tic Oscillation (NAO) [9], and: predation efficiency of

wolves (Canis lupus), mortality of old moose (Alces al-

ces), and growth dynamics of balsam fir (Abies balsa-

mea) on Isle Royale [6]. Additionally, we have

documented influences of the NAO, wolf predation, and

density dependence on the intrinsic rate of increase in

the moose population on Isle Royale [10]. Hence, the

current analysis was motivated by the results of these

earlier attempts to dissect the relative contributions of

intrinsic and extrinsic processes to the dynamics of this

community, as well as by a more general interest in de-

veloping a community-level model of climatic effects at

and among multiple trophic levels that may subsequent-

ly contribute to our understanding of the implications of

climatic change for community stability. Quantifying the

role of climatic variation in the dynamics at multiple

trophic levels requires, however, a modeling framework

that first accounts for the influence of interspecific and

intrinsic processes on the dynamical structure at each

level, so that the influence of intrinsic processes on the

autoregressive (AR) structure of the time series data is
not mistaken for a lagged influence of environmental

stochasticity [11].

Based on the approach used in the development of previ-

ous bivariate population models [12–14], we developed

and applied a model testing for the direct influence of

large-scale climate on the dynamics at individual trophic

levels and interactions among levels (Figure 1). This

graphical model was used to express mathematically the

predicted autoregressive structure of the time series data

at each level on the basis of interspecific density interac-

tions at adjacent trophic levels [12], as well as the time

lags at which climate might influence dynamics at each

level (see equations (1-4) in Methods, below). The time

series we analyzed comprise 30 years of data (1958–88)

from the monitoring study on Isle Royale on the popula-

tion dynamics of wolves and moose, and interannual var-

iability in growth increments of balsam fir [6,15,16].

Though the data extend to the present, estimates of

moose density beyond 1988 have not been adjusted by

cohort reconstruction (see ref. [6]), so we constrained

our analysis to the first 3 decades.

Results
The corrected Akaike Information Criterion (AICc) [17]
scores of the pure time series data at each level of the Isle

Figure 1
The process-oriented ecological model of intra- and inter-
trophic level dynamics in a simple, straight-chain community,
based on empirical observations of interactions between
wolves, moose, balsam fir, and climate on Isle Royale, USA.
The effect of the herbivore on vegetation is specified as a
current-year effect, but is likely to operate at a minimum lag
of 3–6 months. In equations (2) of the Methods section, the
climate term U is partitioned into the strictly direct influence
of climate, UD, and the indirect influence that is reflected in
prey vulnerability to predation, UP. In this scenario, climate
may directly influence survival of wolves and/or moose, and
hence changes in their numbers, from the beginning of winter
to the end of winter. Similarly, climatic influences on the sus-
ceptibility of moose to predation may result in changes in the
numbers of wolves and/or moose from the beginning to the
end of winter. Partitioning of the climate term U into direct
and indirect effects was achieved by setting Ut = UDt + UPt,
where UDt is the NAO winter index in the current year, and
UPt is wolf pack size in the current winter. Note that this cur-
rent year effect is actually a 3–4 month lagged effect, because
it quantifies the influence of winter conditions from Decem-
ber–February on wolf predation and survival, and on moose
survival, that may influence changes in estimates of wolf and
moose density made at the end of winter.
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Royale community indicate that the AR dimension of the

data for the period 1958–88 is one for wolves, three for

moose, and one for fir. AICc scores of the first, second,

and third order autoregressive models [i.e., AR(1),

AR(2), and AR(3)] are, for wolves 4.2, 7.1, 10.6; for

moose -64.6, -63.9, -67.1; and for balsam fir -26.0, -22.1,

-21.6. The lowest AICc score indicates the most parsimo-

nious dimension at each trophic level.

In full agreement with the pure AR structure of the time

series, the most parsimonious ecological model of wolf

dynamics was an AR(1) model with current-year climate

as a covariate (Table 1a); the best model of moose dy-

namics was an AR(3) model with current-year climate as

a covariate (Table 1b); and the best model of fir dynamics

was an AR(1) model with current-year climate as a cov-

ariate (Table 1c). Each of these models provided a good
approximation of the dynamics at the individual trophic

levels (Table 1; Figure 2). Note, however, that for moose

a good approximation of the dynamics was afforded by

an AR(2) model with the same covariates as the best

AR(3) model in Table 1 (R2 = 0.96, AICc = -63.9), and so
might be favored over the AR(3) model on the basis of

parsimony.

Direct density dependence was slightly stronger at the

middle trophic level (moose) than at the top or bottom

levels, though none of the tests for differences between

these coefficients was significant (Figure 3). In contrast,

the influence of large-scale climate was significantly

weaker at the middle trophic level than at either the top

or bottom trophic levels (Figure 3).

Discussion
The results of our analysis corroborate previous observa-

tions of the limiting influences of winter climate in

moose population dynamics [18], of the mediating influ-

ence of winter climate in wolf-moose interactions [19], of

the roles of wolf predation and density dependence in

moose dynamics [10,20], and of the direct influence of

winter climate on growth dynamics of balsam fir [6] on

Isle Royale. To our knowledge, however, this study con-

stitutes the first documentation of direct and simultane-

ous influences of large-scale climate on the dynamics at

multiple trophic levels in a single system.

Although many studies have documented influences of
winter weather, particularly snow conditions, on wolf-

prey interactions (e.g., [19,21–23], we are unaware of

studies showing an influence of winter climate on wolf

population dynamics. Evidence of influences of snow on

wolf movement, social tendencies [24] and predation

rates [6] suggests, however, that winter climate might af-

fect wolf survival. While we wish to avoid speculating as

to potential mechanisms underlying the direct influence

of the NAO on wolf dynamics indicated by our analysis

(Table 1), it may be worth considering that residual vari-

ation in annual wolf mortality, after accounting for the

influences of wolf density and pack size [6], correlates

negatively with the current-year NAO index (standard-

ized r = -0.52, t = 2.22, P = 0.038).

Trophic theory [25], statistical ecology [26,27], and our

model (Figure 1 and equation (4) in Methods) predict

that the embedding dimension (i.e., the number of time

lags we must look back upon in order to find a correlation

with the current year's density) of the dynamics at each

trophic level should reflect the number of species influ-

encing the dynamics at each level, as several recent anal-

yses have also demonstrated [14,28,29]. In this

perspective, we found, however, lower dimension (i.e.,

first-order) at both the predator and vegetation levels
than expected (Table 1), while dynamics at the herbivore

Figure 2
Observed time series data (dots) on interannual dynamics of
(A) wolves, (B) moose, and (C) balsam fir on Isle Royale,
1958–88; and best-fit autoregressive models at each trophic
level (see Table 1), shown as one-step-ahead predicted val-
ues (solid lines) and 95% confidence intervals (dashed lines).
Goodness-of-fit measures for each of the models are given in
Table 1.
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level displayed the higher dimension predicted by our

model. Interestingly, dimensionality in this large-mam-

mal system parallels the dynamic structure of the lynx-

hare system of the Canadian boreal forest at the herbiv-

ore level, but not at the predator level [28]. The embed-

ding dimension of lynx, which are affected by many
species other than snowshoe hare across the boreal for-

est of Canada, is generally two or higher [28,30]. The

contrasting simplicity of wolf dynamics on Isle Royale

reflects, we suggest, the comparatively insular nature of

the Isle Royale system and relative scarcity of additional

species influencing the dynamics of wolves there [31].

Despite having low dimension, the top and bottom

trophic levels displayed complex dynamics (Table 1). In-

deed, spectral analysis of the wolf and moose time series

reveals significant periodicity at both levels that is appar-

ently driven by phase-dependent predation, a process

that is endogenous to wolf dynamics but exogenous to

moose (E. Post, N.C. Stenseth, R.O. Peterson, J.A. Vucet-

ich, A.M. Ellis, in review). Fir dynamics on Isle Royale

are, moreover, tightly linked with changes in moose den-

sity [6,16], which could contribute to exogenously gener-

ated periodicity at that level [27].

The low dimension of the dynamics at the top and bot-

tom trophic levels masks, in a sense, interactions with

the adjacent (herbivore) level that were captured in these

models. Note, however, that in the most parsimonious

model of wolf dynamics (Table 1), the lag-one autore-

gressive term quantifying direct density dependence in-

cludes the coefficient of self-regulation in moose (1 + b1),

and the coefficient of the lag-one pack size term includes

the coefficient quantifying the interaction between

moose density and wolf density (coefficient a2 from

Equation 2a). As well, in the most parsimonious model of

fir dynamics (Table 1), the lag-one autoregressive term
includes the coefficients quantifying the influences of

moose on fir (coefficient c2 from equation 2c) and of fir

on moose (coefficient b3 from equation 2b). Hence, an

important conclusion of this analysis is that while inter-

actions between adjacent trophic levels lead to predic-

tions of higher-order dynamics during the derivation of

the community model (Figure 1), the act of following the

coefficients from the individual trophic-level models

(sensu[32]) allows us to observe that trophic interactions

may also appear in first-order density dependence.

Conclusions
Experimental evidence from microcosm studies indi-

cates that climatic change may alter community stability

if individual populations composing the community ex-

hibit weak density dependence, or if climate change in-

fluences interspecific interactions [33]. While we caution

against drawing general conclusions from this analysis,

our results suggest that climatic change has the potential

to influence the stability of this community by altering

the dynamics and stability at any single, or all three, of

the individual trophic levels. Because self-regulation

(i.e., direct density dependence) was relatively weaker at

the top and bottom trophic levels (though not significant

statistically), it may be these levels at which climate

Table 1: The statistical models of the dynamics at three trophic levels on Isle Royale, USA, 1958–88. The first model given at each troph-
ic level is the full model, showing the autoregressive structure of the time series and co-variates expected to be significant if the rela-
tionships depicted in the process-oriented ecological model in Figure 1 are all important. AICc is the corrected Akaike Information 
Criterion score; bold type indicates the most parsimonious model.

Trophic level Model AICc R2

a) wolves 10.2 0.71

6.5 0.71

2.5 0.71

b) moose Yt = β0 + (3 + β1)Yt-1 + (2 + β2)Yt-2 + (1 + β3)Yt-3 + ω1UDt + ω2UDt-1 + ω3UDt-2 + + ω4UPt-1 +ω5UPt-1 -59.7 0.97
Yt =β0 + (3 + β1)Yt-1 + (2 + β2)Yt-2 + (1 + β3)Yt-3 + ω1UDt + ω2UDt-1 + ω4UPt + ω5UPt-1 -62.7 0.97
Yt =β0 + (3 + β1)Yt-1 + (2 + β2)Yt-2 + (1 + β3)Yt-3 + ω1UDt + ω4UPt + ω5UPt-1 -66.6 0.97
Yt =β0 + (3 + β1)Yt-1 + (2 + β2)Yt-2 + (1 + β3)Yt-3 + ω1UDt + ω5UPt-1 -69.8 0.97

c) fir Zt = γ0 + (2 + γ1)Zt-1 + (1 + γ2)Zt-2 + ω1UDt + ω2UDt-1 + ω3UPt -20.7 0.81
Zt = γ0 + (2 + γ1)Zt-1 + (1 + γ2)Zt-2 + ω1Ut + ω2Ut-1 -22.8 0.79
Zt = γ0 + (2 + γ1)Zt-1 + (1 + γ2)Zt-2 + ω1Ut -26.6 0.79
Zt = γ0 + (2 + γ1)Zt-1 + ω1Ut -30.2 0.79

X X X U U U Ut t t Dt Dt Pt Pt= + +( ) + +( ) + + + +− − − −ϕ ϕ ϕ ω ω ω ω0 1 1 2 2 1 2 1 3 4 12 1

X X U U U Ut t Dt Dt Pt Pt= + +( ) + + + +− − −ϕ ϕ ω ω ω ω0 1 1 1 2 1 3 4 12

X X U U Ut t Dt Pt Pt= + +( ) + + +− −ϕ ϕ ω ω ω0 1 1 1 3 4 12
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change alters stability of the community. It is worth re-

calling, however, that theory predicts that population

stability depends on the relative strengths of intrinsic

and environmental influences on population dynamics

[2]. In this regard, it may be the observation that climate

exerted its greatest influence on the dynamics of the top

and bottom trophic levels (Figure 3) that is most relevant

because, even if self regulation were equivalent at all

three levels, it is at the levels most responsive to climate

where we will see the greatest effects of climate change

on dynamics and stability [3].

Moreover, it appears that in this system, the two trophic

levels with the simplest dynamics (predator and vegeta-

tion) also displayed the greatest response to climate.

Whether community stability in a changing climate re-
lates to dynamic complexity at individual trophic levels,

as opposed to complexity of entire food webs (sen-

su[34]), should prove to be a fruitful and important pur-

suit in future research.

Methods
We expressed the dynamics of predator density (P), her-

bivore density (H), and incremental vegetation growth

(V) as (see Figure 1):

Pt = Pt-1 exp(f(Xt-1, Yt-1), UDt, UPt)  (1a)

Ht = Ht-1 exp (g(Xt-1, Yt-1, Zt-1), UDt, UPt)  (1b)

Vt = Vt-1 exp(h(Zt-1, Yt), UDt)  (1c)

where Xt, Yt and Zt are the loge-transformed Pt, Ht and

Zt, respectively, and where UDt is a climate variable

(here, UDt is the NAO winter index; see [9]), and where

UPt represents wolf pack size, which correlates with win-

ter climatic conditions and pack kill rate (moose killed/

pack/day) [6], and which incorporates social structure

and associated non-predatory behavior that could affect

dynamics of both wolves [35] and moose [6].

The choice of the ecological functions f (•), g (•), and h (•)

is not straightforward, considering the variety of func-

tional forms that have been suggested [36]. However, for

the subsequent purposes of estimating statistical density

dependence, it is biologically reasonable to assume that

the functions may be approximately linear in Xt, Yt, and

Zt; that is, we may assume that population and vegeta-

tion growth rates are approximately linearly related to

log-density [12,14,37,38]. Hence, we may re-write equa-

tion (1) as:

Xt = a0 + (1 + a1)Xt-1 + a2Yt-1 + a3UDt + a4UPt  (2a)

Yt = b0 + (1 + b1)Yt-1 + b2Xt-1 + b3Zt-1 + b4UDt + b5UPt

 (2b)

Zt = c0 + (1 + c1)Zt-1 + c2Yt + c3Ut  (2c)

In a straight-chain community (Figure 1), equations (2)

can be integrated to produce bi-variate autoregressive

statistical models at each trophic level [26], giving:

Xt = a0 + a2b0 - a0(1 + b1) + [(1 + a1) + (1 + b1)]Xt-1 +

[a2b2 - (1 + a1)(1 + b1)]Xt-2 + + a3UDt + [a2b5 - (1 +

b1)a4]UPt-1 + a4UPt + [a2b5 - (1 + b1)a4]UPt-1  (3a)

Figure 3
Coefficients of direct density dependence (solid circles) and
direct climatic influence of the North Atlantic Oscillation
(open circles) on the dynamics at individual trophic levels on
Isle Royale, USA (1958–88). Bars indicate ± 1 SE. Note that
the coefficient of direct density dependence at each trophic
level includes a constant that reflects the predicted dimen-
sion of the time series at that level (see equations [4] and,
e.g., ref. []); these constants were subtracted for the purpose
of comparing the strength of statistical direct density
dependence among levels. Results for Welch's approximation
of the t-test for coefficients with heterogeneous variances
[40] were, for direct density dependence: wolf vs. moose
t0.05,48 = 0.87, P > 0.50; moose vs. fir t0.05,52 = 1.02, P = 0.30;
wolf vs. fir t0.05,52 = 0.07, P > 0.50; and, for direct climatic
influence: wolf vs. moose t0.05,48 = 1.67, P = 0.05; moose vs.
fir t0.05,52 = 1.97, P = 0.02; and wolf vs. fir t0.05,52 = 0.15, P >
0.50.
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Zt = [c0 + c2b0 - (1 + b1)c0] + [(1 + b1) + (1 + c1) + c2b3]Zt-

1 - (1 + b1)(1 + c1)Zt-2 + (c2b4 + c3)UDt - (1 + b1)c3UDt-1 +

c2b5UPt  (3c)

After re-designation of the coefficients (see also [26], pp.

71–72), these equations simplify to:

Yt = β0 + (3 + β1)Yt-1 + (2 + β2)Yt-2 + (1 + β3)Yt-3 + ω1UDt

+ ω2UDt-1 + + ω3UDt-2 + + ω4UPt + ω5UPt-1  (4b)

Zt = γ0 + (2 + γ1)Zt-1 + (1 + γ2)Zt-2 + ω1UDt + ω2UDt-1 +

ω3UPt  (4c)

We used the full model framework (equations 4) to iden-

tify the most parsimonious model of the dynamics at

each trophic level. Beginning with the full model at each

trophic level, we used autoregressive analysis with max-
imum likelihood estimation and backwards elimination

of non-significant covariates and lagged autoregressive

terms to arrive at reduced models that minimized the

corrected Akaike Information Criterion (AICc) [17]. We

considered changes in the AICc scores of less than one to

be insignificant improvement of the models [37,39].
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