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Drivers of daily movement patterns 
affecting an endangered vulture flight activity
Ruth García‑Jiménez1, Juan M. Pérez‑García1*  and Antoni Margalida1,2,3

Abstract 

Background: The development of satellite tracking technology enables the gathering of huge amounts of accurate 
data on animal movements over measured time intervals, to reveal essential information about species’ patterns 
of spatial use. This information is especially important in optimizing the design of conservation and management 
strategies for endangered species. In this study, we analysed the main drivers of daily patterns in the flight activity of 
the threatened Bearded Vulture Gypaetus barbatus. We studied 19 Bearded Vultures tagged with solar‑powered GPS 
transmitters from 2006 to 2016 in the Pyrenees (Spain). We assessed the relative influence of external factors (season 
and daylight time) and internal factors (sex, breeding season and territorial status) on their daily activity behaviour by 
computing mean hourly distance travelled, maximum displacement and cumulative distance travelled per hour.

Results: Our findings showed a clear difference in all the estimators between territorial and non‑territorial (floating) 
members of the population, showing that non‑territorial individuals spent much longer in flight and travelled larger 
distances per day. We detected an important influence of daylight time and season on the daily rhythms of Bearded 
Vultures; flight activity increased during the last three quarters of daylight and was greatest in the spring. Breeding 
period and sex had also an effect on the maximum displacement and cumulative distance travelled. Individuals flew 
more during the breeding period and females tended to exhibit greater cumulative and maximum distances per hour 
than males regardless of breeding season.

Conclusions: Pyrenean Bearded Vultures flight daily activity was strongly influenced by daylight time, season, and 
territorial status, while individual sex and breeding season showed a milder effect on the birds’ movement behaviour. 
This study gives a novel insight into how external factors act as main drivers of the daily flight activity pattern of a 
long‑lived avian scavenger.
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Background
Interest in movement ecology has increased in recent 
years due to its key role in the design of more specific 
and efficient management and conservation strategies. 
The development of satellite tracking technology enables 
the gathering of huge amounts of accurate data on ani-
mal movement over measured time intervals, to provide 
essential information on species’ patterns of spatial use 
[1, 2]. Modern satellite transmitters can also record indi-
vidual physiological parameters during flight [3, 4]. The 

activity decisions made by individuals influence overall 
population behaviour and so affect population viability 
as each individual decides its own specific demographic 
process, such as migration, feeding, and reproductive 
behaviour [5]. The assessment of space use and territory 
occupancy patterns is particularly useful in bird commu-
nity studies (e.g. [6–8]). Beyond the direct information 
gathered on dispersal [9, 10], roost site selection [11], 
and foraging activity [12, 13], study of movement ecol-
ogy provides information indirectly related to an animal’s 
behaviour in reaction to prevailing climatic conditions [4, 
14, 15], on the effects of food availability on the use of 
space and on population trends [16, 17].

Avian scavengers provide human society with indis-
pensable ecological services, recycling carrion biomass 
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through their removal of waste and preventing the accu-
mulation of dead animal biomass, so reducing the spread 
of diseases and contributing to nutrient cycling [18, 19]. 
Due to the ephemeral occurrence and random distribu-
tion of carcasses, vultures have evolved adaptive traits to 
exploit carrion as effectively as possible [20–22]. The bal-
ance between their maximization of food intake and min-
imization of energy expenditure has therefore developed 
to determine the daily foraging movements of scavenging 
species [23, 24]. To date, several internal and external fac-
tors have been suggested as drivers of the daily activity 
movement patterns of scavengers, acting either indepen-
dently or in synergy. Intrinsic factors include biological 
and physiological parameters such as territorial status, 
sex, breeding season and level of hunger [23, 25–27]. 
External factors are mainly characterized by weather 
conditions and—both of which generally change season-
ally—[4, 28], food availability [20], and intra- or interspe-
cific interactions [20].

The Bearded Vulture Gypaetus barbatus is a long-lived 
territorial vulture inhabiting Old World mountain biomes 
with a diet consisting 70–90% of bones from wild and 
domestic ungulates, and therefore occupies a very spe-
cialized trophic niche [22, 29, 30]. Despite the increment 
of the Pyrenean population in the last 30 years, this posi-
tive tendency could be menaced by mortality factors such 
as the illegal use of poison baits, lead intoxication, food 
shortages, and anthropogenic habitat changes [31–35]. 
This situation highlights the need for an in-depth under-
standing of the potential threats, including mortality 
hotspots, the causes of breeding failure, and limitations 
on the species’ use of space. For instance, information 
regarding their daily activity patterns is especially useful 
in planning reintroduction conservation programs and to 
enhance any future conservation or management action 
considering its habitat use and spatial behaviour.

This study set out to assess the influence of internal 
and external factors on the daily activity patterns of Pyr-
enean Bearded Vulture flight activity. To this end, we 
analysed 38,248 data obtained from a population of 19 
GPS-tracked Bearded Vultures in the Pyrenees (Spain) 
between 2006 and 2016, to examine the effect of internal 
factors such as sex, territorial status and breeding season, 
and of external factors such as daylight time and season.

Methods
Study species
The habitat distribution of Bearded Vultures has been 
shrinking since the 1970s (with only 243 pairs remain-
ing in the European Union in 2016). During the last 
30 years a variety of management and conservation pro-
grams have been developed for this threatened species, 
achieving a substantial rise in the Pyrenean population, 

although, the overall distribution of Bearded Vulture has 
scarcely expanded [36]. This species is enlisted as near 
threatened by the IUCN Red List [37].

Study area
This study was conducted in Pyrenees, located in the bor-
der area between France and Spain, in the Eurosiberian 
region. In this area the Bearded Vulture population com-
prises more than 70% of the European breeding popu-
lation. The most important breeding areas lies on the 
southern slopes of the Pyrenees, with the highest nest-
ing densities in steeply sloping areas over 1000 m height 
level, where human access is limited and orographic 
updraughts are more frequent [30].

Capture, tracking and data collection
Twenty Bearded Vultures were captured in the period 
2006–2016 using radio-controlled bow-nets at supple-
mentary feeding stations (n = 17), at nests (n = 1), or as 
injured individuals recovered at official wildlife recov-
ery centres (n = 2), where birds are released following 
rehabilitation (for more details about these individuals’ 
capture see [17, 38]). We monitored their movement pat-
terns using 70  g solar-powered Argos satellite transmit-
ters (PTT/GPS Microwave Telemetry, Inc. Columbia, 
MD, USA) attached by means of a breakaway harness 
with a 0.64 cm Teflon ribbon (Bally Ribbon Mills, Bally, 
PA, USA). The transmitters were programmed to send 
a fix (manufacturer’s estimated error ± 18 metres) each 
hour from 4:00 to 22:00 UTC, with the exception of two 
individuals, whose transmitters sent a GPS location every 
2  h. Birds were aged into four different classes using 
plumage characteristics: juveniles (birds until the 1st 
year), immatures (2–3 years), sub-adults (4–5 years) and 
adults (6 years or over). Identification of gender was per-
formed using blood samples by PCR amplification of the 
CHD-W gene [39]. We defined territorial Bearded Vul-
tures when exhibited spatially aggressive defense, nest-
building behaviour and sexual activity on a fixed area 
[38–41].

Data processing and statistical analysis
We analysed the daytime routine of Bearded Vultures 
by calculating three different estimators: maximum 
displacement, defined as the average Euclidean dis-
tance between the initial daily location and any posi-
tion reached on the consecutive hours; hourly distance, 
approximated as the average straight-line distances 
covered in an hour and cumulative distance travelled, 
estimated as the sum of straight-line distances covered 
during each hour on a given day. To build a uniform and 
robust data base, we selected only data from days where 
at least seven consecutive GPS-locations were recorded 
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during day with a maximum time lapse of 4  h between 
fixes. One of the tracked birds did not meet this mini-
mum set of criteria for locations, so we exclude all its 
data from the analysis.

We studied differences in the daily movement param-
eters according to three internal factors: sex, breeding 
season, and territorial status; and two external factors: 
daylight time and season.

To evaluate the influence of sex on the daily move-
ment of Pyrenean Bearded Vultures we considered only 
territorial individuals. For breeding season comparisons 
of daily activity patterns, we divided the data in the two 
breeding periods (breeding period, from 1st January to 
31st July, and the non-breeding period, from 1st August to 
31st December) based on Margalida et al. [38]. To study 
the possible influence of season on the daily pattern of 
flight activity we defined four seasons conforming to the 
Mediterranean climate: spring (from 21st March to 20th 
June); summer (from 21st June to 22nd September); fall 
(from 23rd September to 20th December); and winter 
(from 21st December to 20th March). We did not include 
age in the analysis because our previous studies showed 
it to be subordinate compared to territorial status [38]. 
Differences in maximum displacement, cumulative dis-
tance travelled and hourly distance travelled for differ-
ent territorial status and breeding season were compared 
using the Wilcoxon Mann–Whitney tests. Sex related dif-
ferences between territorial individuals were also tested 
for these three variables. We analysed each relationship 
independently.

To standardize the seasonal variation in daylight, we 
generated an index of daylight duration (hereinafter 
called daylight index) which denotes the daylight time 
considering the astronomical twilight as the start and the 
end of a daylight length setting sunrise -the astronomical 
dawn, the time when the geometric centre of the Sun is 
18 degrees below the horizon in the morning—(value 0) 
and sunset—the astronomical dusk, when the geometric 
centre of the Sun is 18 degrees below the horizon preced-
ing the night—(value 1) for each day. We included the 
three twilight periods before sunrise (astronomical, nau-
tical and civil twilights; data obtained from www.timea 
nddat e.com and summarised in Additional file 1) because 
several authors have suggested that they mark the begin-
ning of the first daily peak of activity in bird’s circadian 
pattern [42–44], as well as a short time after sunset dur-
ing which birds were observed making the journey back 
to their roosting sites. We computed this daylight index 
as the division of daylight elapsed fix time by daylight 
length, where the numerator is the period of daylight 
spent until the fix transmission, and denominator is 
length of daylight hours within a given 24 h day.

To analyse and represent the data we grouped the day-
light index ranges into an integer scale from 0 to 10 fol-
lowing the scale described above, but to a higher decimal 
order. We incorporated also some locations before and 
after the astronomical twilight (with index values − 1 and 
11, consecutively) to evaluate the behaviour of the birds 
some dark hours previous to sunlight incidence (Addi-
tional file 1, Additional file 2: Figure S1 and Table S1).

To examine the relationship between movement 
parameters and biological (sex, breeding season, and ter-
ritorial status) and external (daylight time and season) 
factors we used linear mixed models (LMM) with indi-
vidual as a random factor [45]. We compared each model 
with the null case, including both the variables and the 
interactions. Model comparisons were carried out using 
Akaike information criteria (AICc; [46]). We computed 
delta AICc to determine the strength of evidence, and 
AICc weights to represent the relative likelihood of each 
model [46]. Models with delta AICc > 4 were discarded. 
All analyses were conducted using R statistical software 
(v 2.3-2. R Development Core Team 2007, http://www.R-
proje ct.org) with the lme4 package for LMM analyses. All 
tests were two-tailed and statistical significance was set 
at α ≤ 0.05. All results were shown as mean ± 1 SD.

Results
We recorded 78,814 GPS locations from 20 Pyrenean 
Bearded Vultures, during November 2006 to December 
2016. After filtering, we analysed 38,248 fixes from 19 
individuals. The highest frequencies of locations were 
recorded from 9:00 to 16:00 UTC usually concurring 
with the hours with major sunlight availability (Addi-
tional file  2: Figure S1, S2 and Table  S2). The records 
were—according to sex—34.1% females and 65.9% 
males and—in terms of the age class and territorial sta-
tus—86.6% adults (of which 28.6% were locations from 
territorial birds), 11.3% were from subadults, 2.0% were 
from immatures, and 0.1% were from juveniles.

Territorial status and breeding season
The floating population (non-territorial birds) exhib-
ited a significantly greater daily activity pattern com-
pared to territorial birds. Significant differences were 
found in cumulative distance travelled (Wilcoxon test, 
Z = 13.0, p < 0.001), maximum displacement during the 
daylight (Z = 40.2, p < 0.001) and hourly distance trav-
elled (Z = − 3.4, p < 0.001) according to their territorial 
status. Non-territorial individuals exhibited the high-
est values for the three daily distance covered estimators 
during the breeding period (Figs.  1, 2 and 3). In non-
territorial individuals, the maximum mean cumulative 
distance travelled was c. 42  km, showing a marked rise 
during the two middle daylight quarters (from daylight 

http://www.timeanddate.com
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Fig. 1 Influence of territorial status (left: non‑territorial, right: territorial) and breeding season (blue: non‑breeding, red: breeding) on the cumulative 
distance travelled. The response variable, log (y + 1), has been transformed to represent the variation graphically
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Fig. 2 Influence of territorial status (left: non‑territorial, right: territorial) and breeding period (blue: non‑breeding, red: breeding) on the maximum 
displacement travelled by adult territorial individuals
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Fig. 3 Influence of territorial status (left: non‑territorial, right: territorial) and breeding period (blue: non‑breeding, red: breeding) on the hourly 
maximum displacement. The response variable, log (y + 1), had been transformed to represent the variation graphically
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index values of 2–8), while territorial individuals showed 
a gradual increase in this distance estimator throughout 
the daylight hours (Fig.  1), reaching maximum medium 
values of 20–22  km cumulative distance travelled. The 
same pattern was observed for the maximum daytime 
displacement in the non-territorial birds, although terri-
torial vultures showed increasing mean values until the 
middle of the daylight period, followed by stabilization 
of these values (Fig.  2). Independently of territorial sta-
tus, the longest average hourly distances were travelled 
during the middle of the daylight period, although the 
greatest distances were achieved by non-territorial indi-
viduals (6.75 ± 9.05  km), regardless of breeding season 
(Fig.  3). Furthermore, non-territorial individuals during 
the breeding period showed a range of maximum average 
displacements between 0.06 ± 0.11 and 20.77 ± 26.51 km, 
while non-breeding birds had a significantly lower mean 
maximum displacement range of between 0.14 ± 0.21 
and 16.83 ± 21.01  km (Z = − 7.4, p = 0.01). Breeding 
season also significantly affected territorial individu-
als: during the breeding period they exhibited a notably 
higher maximum distance from the nest 5.25 ± 13.56 km, 
and longer mean cumulative distance travelled of 
22.07 ± 21.48  km, compared to the maximum daily dis-
placement of 3.72 ± 8.41  km (Z = − 7.5, p < 0.001) and 
daily covered distance of 20.02 ± 18.06  km (Z = − 5.7, 
p < 0.001) observed during the non-breeding period. 
The territorial birds also showed significantly higher val-
ues of hourly displacement during the breeding period 
(Z = − 4.6, p < 0.001; see Fig. 3).

The effect of sex in territorial Bearded Vultures
During the breeding period, females showed higher 
flight activity than males, performing maximum dis-
tances travelled per day of 14.31 ± 28.93  km, cumula-
tive distances travelled of 37.38 ± 37.45  km, and hourly 
distances travelled of 5.22 ± 7.45  km, in contrast with 
males which travelled mean maximum day distances of 
5.07 ± 6.76  km (Z = 5.2, p < 0.001), cumulative daily dis-
tances of 21.67 ± 17.53 km (Z = 2.4, p = 0.02) and hourly 
distances of 3.24 ± 4.27  km (Z = 3.3, p = 0.001). A simi-
lar trend was also observed within the non-breeding 
birds, where males achieved a maximum displacement of 
3.20 ± 4.12 km and hourly distances of 3.04 ± 3.94 km at 
least 1 km significantly less than females, which achieved 
maximum distances covered per day of 6.96 ± 17.94 km 
(Z = − 2.6, p = 0.009) and hourly movements of 
4.42 ± 5.48 km (Z = − 3.0, p = 0.002; see Figs. 4, 5 and 6).

Seasonal patterns
Based on the linear mixed models results, season is a 
highly significant factor leading to remarkable differences 

between the mean seasonal values of all three flight dis-
tance estimators (Table 1).

Flight activity of non-territorial birds stands out in 
spring, when they reached the greatest maximum day-
time displacement, cumulative distance travelled, and 
hourly distance. Nevertheless, a similar flight pattern was 
observed for non-territorial Bearded Vultures in every 
season, showing a growing trend for the daily maximum 
displacement and cumulative distance travelled from 8 h 
since 18 h (UTC), excepting fall, when the peak of activ-
ity was achieved a little before (around 16–17  h, UTC). 
In spring and summer (the two seasons with the highest 
daylight availability) the Bearded Vulture flight activity 
extended longer (until 22  h UTC). The second greatest 
maximum displacement and cumulative distance trav-
elled was recorded in winter (Fig. 7).

Territorial Bearded Vultures presented an increased 
flight activity during spring and summer achieving the 
peak approximately at 18 h UTC. In fall and winter even 
though the flying activity decreased, the rise was interest-
ingly detected at 19 h, coinciding with the hours around 
astronomical sunset. No data were registered after 20 h 
for territorial birds (Fig. 7).

Concerning hourly distance, all the individuals showed 
a uniform movement pattern during all the year, attaining 
the maximum values around 13 h UTC. During fall, indi-
viduals travelled the shortest distances (Fig. 7).

Multifactorial model
The daylight index and seasonal factors were the most 
influential of all the parameters tested in every linear 
model since they were selected in each of the models built 
for the three distance covered estimators. Consecutively, 
territorial status had the next most noticeable effect on 
cumulative distance travelled and hourly displacement, 
followed by the effect of sex which only appeared in the 
cumulative distance travelled model. Breeding season 
was the factor with the weakest relationship with all of 
the three distance covered estimators.

The best explanatory model for maximum displace-
ment involved the interaction between sex and terri-
torial status, daylight index, and seasonal variables. In 
the hourly distance case, the model comprising territo-
rial status, season and daylight index overcame the null 
model, while for the cumulative distance travelled esti-
mator, the best model involved all of the variables tested 
(Table 1, Additional file 3).

Discussion
Our results on daily flight behaviour show an important 
spatial decoupling between the territorial and non-terri-
torial individuals in the Pyrenees. Because non-territorial 
individuals are not central place foragers, they exhibited 
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greater daily flight activity travelling longer distances, 
showing greater cumulative distances covered in an hour, 
higher maximum displacements, and greater hourly dis-
tance rate. These findings agree with the results regard-
ing foraging movements obtained by Krüger et al. [26] in 
South Africa and by Margalida et al. [38] in the Pyrenees, 
in which territorial status influenced spatial distribution 
patterns of Bearded Vultures. In these studies, non-ter-
ritorial individuals exhibited Kernel 90% home ranges of 
between 10,500–26,000  km2 in South Africa and 1800–
11,600  km2 in the Pyrenees, areas that are significantly 
larger than those covered by territorial individuals of 
286 ± 361 km2 in South Africa and 63 ± 59.5 km2 in the 
Pyrenees. In addition, our results show a daily temporal 
dissociation according to the status of an individual (ter-
ritorial vs non-territorial); non-territorial birds showed 
greater increments in maximum distance covered and 

the cumulative distance covered. The non-territorial sta-
tus of these individuals allows them to travel farther and 
until later into the daylight period (i.e. during the last 
third of the daylight hours) compared with territorial 
individuals, who increased their maximum daily distance 
travelled until the period close to noon after which their 
daily maximum distance values stabilised (Figs. 1, 2, 3, 4, 
5, 6).

Our findings suggest that breeding period also has an 
influence over the daily flight activity, but lower than 
other internal factors. As with other obligate avian 
scavenger species, breeding Bearded Vultures experi-
ence an increased energy requirement due to paren-
tal effort. These reproductive tasks could explain the 
noticeable rise in the three different distance parame-
ters measured during the last three quarters of the day-
light period in the territorial birds. This accords with 
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Fig. 4 Influence of sex and breeding period (red: non‑breeding, blue: breeding) on the cumulative distance travelled by adult territorial individuals
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the significant seasonal effect detected in their daily 
activity patterns because the greatest distance of maxi-
mum displacement, cumulative distance and hourly 
distance travelled were observed in spring -especially 
for non-territorial birds -, coinciding with the peak of 
the breeding period, whilst the shortest were realized 
in fall during the non-breeding period (Fig.  7). How-
ever, our results only showed a significant effect of the 
breeding period on the cumulative distance travelled. 
Reproductive failure is a factor which should also be 
considered because it would allow the vultures to travel 
further afield, especially during March and April, when 
reproductive failure rates (hatching period and first 
days of the chick) are at their highest.

The influence of season has been generally evident in 
other studies of the circadian rhythm of birds [24, 47, 
48], because variations in the quantity and intensity of 
solar radiation throughout the year determinate the tim-
ing of a bird’s circadian behaviour [49], and condition-
ing intrinsic factors such as the speed of migration [50]. 
Seasonal effects can also influence external factors such 
as variation in carrion food availability due to seasonal 
transhumance of livestock [17], thus shaping vultures’ 
daily activity patterns, and biasing the performance of 
solar powered GPS transmitters [51]. We detected a 
seasonal influence on the values of the distance cov-
ered estimators, the longest distances being recorded in 
spring. Flight activity pattern seems to increase similarly 
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Fig. 5 Influence of sex and breeding period (red: non‑breeding, blue: breeding) on the maximum displacement travelled by adult territorial 
individuals
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Fig. 6 Influence of sex and breeding period (red: non‑breeding, blue: breeding) on the hourly mean distance travelled by adult territorial 
individuals

Table 1 Linear mixed models to explore the factors influencing the distance covered estimators (maximum 
displacement, cumulative distance travelled and hourly distance)

Factors included were territorial status (Territ), daylight index (DI), climatic season (Season), breeding season (Br_S), and sex (Sex) and the simple interactions Sex*Territ, 
Season*Territ and Br_S*Territ. The model with the lowest AIC value (in italics) is the most parsimonious. K: total number of parameters (explanatory terms + random 
term + residual deviance); AICc: corrected Akaike information criterion; ΔAICc: difference between the AICc value for that model and the best model; and, W: Akaike 
weights

Model Factors K AICc ΔAICc W

Maximum displacement Territ* Sex+Season+DI 10 101,320.8 0.00 0.99

Cumulative travelled distance Territ+Season+DI+Sex+Br_S 10 107,447.1 0.00 0.65

Territ + Season + DI 8 107,449.3 2.28 0.21

Hourly distance Territ+Season+DI 8 89,516.3 0.00 0.64

Territ + Season + DI + Sex 9 89,518.2 1.93 0.24

Territ + Season + DI + Sex + Br_S 10 89,519.6 3.29 0.12



Page 11 of 15García‑Jiménez et al. BMC Ecol  (2018) 18:39 

on every season during the same daylight time (at the 
last third of the daylight) differentiating between the 
two territorial status. An elevated flight activity is main-
tained by non-territorial individuals some hours after 
astronomical sunset for every season, whilst territo-
rial birds seem to sustain or even augment their activ-
ity pattern after dusk particularly in winter (but not in 
spring or summer), probably related with the reproduc-
tive period (Fig. 7). In addition, the flying fixes ratio reg-
istered in winter (37%) was higher than all of the other 
seasons (the lowest was logged in summer (32.5%), con-
sidering flying fixes > 1.39 m/s following Silva et al. [51]). 
This supports our aforementioned hypothesis that the 
energetic requirements of Bearded Vultures rise dur-
ing the breeding period (winter and spring) combined 
with the decrease in of food availability in this time of 
year [17] which forces them to fly for longer periods and 
over longer distances. However, despite this, we did not 
observe a clear seasonal variation in the daily activity pat-
terns of the territorial Bearded Vulture flight behaviour.

While timing of sunrise and sunset determines the 
daily start and end of aerial activity in most obligate 
scavengers [52], Bearded Vulture is able to continue fly-
ing after the sunset. In fact, maximum air temperature 
and wind speed in temperate climate ecosystems, and 
thus the best wind uplift conditions for large avian scav-
enger flight, occur in summer during the hours around 
noon [49, 53]. So, even while the greatest chances of find-
ing profitable carcasses are in the early morning hours 
because ungulate mortality peaks during the night [20, 
24], the highest displacements of Pyrenean Bearded Vul-
tures are recorded during the second half of the daylight, 
regardless of season, by virtue of their energy-efficient 
foraging flight and reduced wing loading in compari-
son with other vulture species [15, 49, 54]. This allows 
Bearded Vultures to profit the later daylight hours of con-
vective updraughts to return to the nest or to search for a 
roosting site [15]. Moreover, the specific diet of this vul-
ture—based mainly on the exploitation of bone remains, 
a resource which is preserved long time after a carcass 
has died—[29, 55] releases it from interspecific competi-
tive pressures, reasonably diminishing the impact of the 
optimal time to exploit carrion in the species daily feed-
ing habits [22]. All these physiognomical and ecological 
attributes enable Bearded Vultures to solve the trade-off 
between the ideal feeding time and the availability of 
wind resource performing the furthest travelling dis-
tances during the afternoon, even though the greatest 
hourly distances travelled are achieved at mid-day.

The sex of an individual influenced the longest dis-
tances covered in a day and our results showed intra-
sexual, but not inter-sexual, differences for this estimator. 
Concretely, both adult non-territorial females and males 

travelled significantly farther in a day than territorial 
individuals. However, an unexpected asymmetry was 
detected between the sexes for the cumulative distance 
travelled. Females covered significantly more kilome-
tres than males during a day, consistent with the trend 
in spatial use already described for the same Pyrenean 
Bearded Vulture population [38]. Several studies of avian 
species underpin this inter-sexual spatial pattern discord-
ance relating to the behavioural differences in reproduc-
tive roles between the sexes [56, 57] as well as individual 
or even sex-size variations [24, 58, 59]. However, the 
Bearded Vulture is a monomorphic species and paren-
tal care is divided equally between the male and female 
[60], and therefore we would predict similar energy 
requirements for both sexes. A possible explanation of 
this sexual difference in daily distance covered during 
the breeding period could be due to the raised female 
energy demand resulting from the egg biosynthesis and 
the reproductive jeopardy if this is not met. In spite of the 
differences in daily spatial behaviour between the sexes, 
there are no differences in the temporal daily flight pat-
terns between them.

According to our findings, the daytime flight behav-
iour of the Bearded Vulture does not follow a random 
pattern. The external factors studied (daylight index and 
season) strongly regulate the daily flight activity, while 
internal factors such territorial status, sex, and breeding 
period mould its flight dynamic. The synergy between 
both categories of factors enables the Bearded Vulture 
to confront the trade-off between travel costs—mostly 
constrained by weather conditions—and energy require-
ments. In addition, territorial status was, predictably, the 
most influential of all the internal factors studied. Other 
interesting drivers of flight behaviour have come to light, 
such as the relationship between territoriality and breed-
ing season and the influence of sex in this monomorphic 
species, suggesting that these synergistic and intrinsic 
factors may play a currently unexplored role in this spe-
cies’ flight patterns.

Understanding the daily movement ecology of the 
Bearded Vulture is essential for predicting its future dis-
persal, foraging and reproductive patterns. These data 
are interesting for developing future conservation strate-
gies (such as those related to the management of Supple-
mentary Feeding Sites) both in the Pyrenean region and 
other ecosystems with distinct climatological conditions 
or food availability. Indeed, given the variety of mortal-
ity risks faced by this species and its high adult mortal-
ity rate [32, 36, 61], information on the daily distances 
travelled by juveniles during their early dispersal stages 
might help to improve the design of future conservation 
measures.
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Territorial birds

Non-territorial birds

Fig. 7 Influence of season and territorial status on Bearded Vultures flight activity represented by three estimators: maximum displacement (line 
chart), cumulative distance travelled (bar chart) and hourly distance travelled (area chart). ND not enough data available at that level. Astronomical 
twilight is marked—if it is present—with a dashed line. The sun is placed at noon time
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Conclusions
This study is the first detailed daily activity analysis devel-
oped on the Bearded Vulture improving our knowledge 
on the movement ecology of this threatened species 
trough a finer spatio-temporal information about the 
daytime flight routine of the species. Our findings show 
that the main drivers of the Bearded Vulture daily flight 
activity are daylight time, season, and territorial status of 
the individual. This agrees with several authors’ hypoth-
esis supporting the daylight time as the most influential 
factor of all of the external factors determining circadian 
behaviours [62]. Pyrenean Bearded Vultures covered the 
furthest travelling distances during the afternoon. More-
over, internal factors as territorial status had a remark-
able effect on the daily activity patterns of the vulture. 
Non-territorial Bearded Vultures presented the greatest 
daily flight patterns. Both individual’s sex and breeding 
period mildly shaped the flight activity resulting in the 
females and breeding individuals travelling further afield 
than males and non-breeding individuals.
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