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Abstract 

Background: Rehabilitation of degraded rangelands through the establishment of enclosures (fencing grazing 
lands) is believed to improve soil quality and livelihoods, and enhance the sustainability of rangelands. Grazing 
dominated enclosure (GDE) and contractual grazing enclosure (CGE) are the common enclosure management 
systems in West Pokot County, Kenya. Under CGE, a farmer owning few animals leases the enclosure to households 
with relatively more livestock, while GDE is where the livestock utilizing the enclosure are purely owned by the farmer. 
Livestock management in both systems is via the free-range system. This study evaluated the effect of enclosure man-
agement on total soil organic carbon (SOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) 
and nitrogen (MBN) as key indicators of soil degradation at 0–40 cm depth. The two enclosure systems were selected 
based on three age classes (3–10, 11–20 and > 20 years since establishment) (n = 3). The adjacent open grazing area 
(OGR) was used as a reference (n = 9).

Results: Relative to OGR, the pasture enclosures significantly decreased soil bulk density and increased the con-
centrations of total organic C, POC, MBC and MBN compared to the degraded OGR (P < 0.001). Significantly higher 
concentrations of POC and MBC was recorded in GDE than CGE (P = 0.01). The POC accounted for 24.5–29.5% of the 
total SOC. MBC concentrations ranged from 32.05 ± 7.25 to 96.63 ± 5.31 µg C g−1 of soil in all grazing systems, and 
was positively correlated with total SOC and POC (P < 0.001). The proportional increase in POC and MBC was higher in 
GDE (56.6 and 30.5% respectively) compared to CGE (39.2 and 13.9% for POC and MBC respectively).

Conclusions: This study demonstrated that controlling livestock grazing through the establishment of pasture 
enclosures is the key strategy to enhance total SOC, POC, MBC, and MBN in degraded rangelands; a precondition 
for improving soil quality. Therefore, the establishment of enclosures is an effective restoration approach to restore 
degraded soils in semi-arid rangelands.
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Background
Human-induced soil degradation is a major concern 
globally [1, 2], and has contributed to the decline in net 
primary productivity in arid and semi-arid lands [3]. 
Overgrazing in rangelands has altered the natural eco-
system, causing disturbances in biotic and abiotic com-
ponents and livelihood of the community. Among the 
negative impacts of overgrazing is the loss of soil organic 
carbon (SOC), a scenario that occurs both in the tem-
perate [4–6] and tropical rangelands [7, 8]. Soil organic 
carbon is the basis for soil fertility, the source of energy 
for soil microorganisms and regulates climate and bio-
diversity [9–12]. Restoration degraded rangelands have 
therefore attracted considerable attention in the recent 
past. The restoration of degraded grazing land may be 
important to improve the accumulation of SOC soil. The 
establishment of pasture enclosures by fencing degraded 
communal grazing areas has been reported to reduce the 
negative impacts of continuous grazing by preserving 
soil resources, leading to accumulation of SOC that was 
previously lost [7, 12, 13]. Understanding the dynamics 
and potential of soil to store organic carbon is not only 
essential for improving soil quality and enhancing the 
sustainability of rangelands in Sub-Saharan Africa, but 
also mitigate climate change by offsetting  CO2 emissions 
[4, 14].

Soil organic carbon is regarded as an indicator of soil 
quality and by extension, the state of soil degradation as 
it determines soil structure, nutrient retention and sup-
ports biological diversity [15–17]. The reduction or loss 
of SOC could, therefore, lower soil fertility and con-
sequently, lead to land degradation [18]. According to 
[13], the establishment of enclosure in a degraded range-
land resulted to a 34% increase in total SOC content in 
the upper 40  cm layer of soil. Besides, [19] recounted 
that degraded soils in semi-arid rangeland with low lev-
els of organic carbon may be functionally improved by 
establishing pasture enclosures. However, [14] and [15] 
acknowledged that changes in total SOC require several 
years to detect. The labile fractions of total SOC include 
particulate organic carbon (POC) and microbial biomass 
carbon (MBC) [20]. These fractions may be more sensi-
tive to land management than the total SOC. The POC 
acts as a substrate for soil microorganisms and influences 
soil nutrient cycles and biological properties of soil [21].

Livestock enclosures have gained cognizance as a suc-
cessful tool for controlling heavy grazing and land deg-
radation in Eastern Africa [19, 22–24]. In the arid and 
semi-arid rangelands of Western Kenya, efforts to restore 
degraded grazing lands through the establishment of pas-
ture enclosures started in the mid-1980s [25]. As indi-
cated by [26], grazing dominated enclosure (GDE) and 
contractual grazing enclosure (CGE) are the common 

types of enclosure management systems in West Pokot 
County, Kenya. The enclosures are privately owned and 
utilized, with an average size of 5  ha [26]. Contractual 
grazing represents a grazing arrangement where a farmer 
owning few animals leases the enclosure to households 
with relatively more livestock. On the other hand, GDE 
is where the livestock utilizing the enclosure is purely 
owned by the farmer. The stocking rate of the enclosures 
in the area ranges between 1 and 42 animals with a mean 
of 7 animals [26]. Livestock management in both CGE 
and GDE systems is via the free-range system. Previous 
studies in semi-arid rangelands show that POC and MBC 
concentrations increase after enclosing degraded graz-
ing lands [6, 19, 27], while others reported that grazing 
management has no significant impact on the dynam-
ics of labile fractions of carbon [28, 29]. These variations 
were attributed to differences in soils [30] and vegetation 
characteristics such as litter quantity and quality [31–33]. 
However, pasture management in the former studies was 
via cut-and-curry where livestock was not allowed to 
graze (excluded) in the enclosures.

Despite the fact that the practice of enclosures has 
existed in West Pokot County for over three decades, 
data on the effectiveness of these enclosures to restore 
degraded soils in terms of organic C in the area is lack-
ing. Understanding the effect of enclosure management 
system and their age on SOC is crucial to offer the most 
effective carbon management options in rangelands. 
Based on the hypothesis that GDE enclosures are more 
effective to restore degraded soils than CGE enclosures 
by improving the content of soil organic carbon and 
microbial biomass, this study was carried out to deter-
mine the concentrations of total SOC, POC and MBC 
in CGE and GDE under three age-classes (3–10, 10–20, 
and > 20 years since effective protection) with the similar 
quantifications in the adjacent open grazing areas as the 
baseline.

Methods
Study site
The study was conducted in Chepareria Ward (01°18′17″–
01°19′41″N and 035°14′16″–035°15′49″E, 1680  m. a. s. 
l) in West Pokot County, Northwestern Kenya. The area 
is classified as semi-arid; receiving an average rainfall 
of 280  mm of rainfall for the short rains which occur 
between mid-October and January and 570  mm for the 
long rains which occur from mid-March to July [34]. The 
annual average daily air temperature ranges between 16 
and 30  °C [34]. The soils are predominantly sandy clay 
to loamy sand and are classified as Haplic Lixisols [35]. 
Vegetation is predominantly grassland (Themeda trian-
dra, Eragrostis superba, Cymbopogon validus, Cenchrus 
ciliaris and Cynodon dactylon) [36], with scattered native 
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(Acacia spp., Balanites aegyptiaca, and Kigelia africana) 
and exotic (Grevillea robusta) tree species [22]. The aver-
age herbaceous vegetation cover range between 20.7% in 
open grazing rangeland and 40.2% in enclosure systems, 
with 72.0  kg dry matter (DM)  ha−1 and 521.8  kg DM 
 ha−1 of herbaceous above-ground biomass in open graz-
ing rangeland and enclosure respectively [36]. The tradi-
tional open grazing areas are characterized by free-range 
grazing of livestock with a stocking rate that exceeds the 
upper limit of the enclosure systems. The open graz-
ing areas had a history of severe land degradation prior 
to the establishment of enclosures in mid-1980s by Vi-
Agroforestry [25].

Soil sampling
Soil sampling was carried out during the short rain sea-
son, November 2016. In consultation with the local 
leaders and Vi-Agroforestry officials, the CGE and 
GDE enclosures were grouped into three age classes: 
3–10 years, 11–20 years, and > 20 years, and three enclo-
sures were randomly selected from each enclosure type/
age class combination. A total of 18 enclosures were 
selected for sampling. Nine open grazing sites (OGR) 
were selected as controls (n = 9). This gave a total of 27 
sampling sites. Within each enclosure/age class and in the 
adjacent open grazing areas, three 50-m transects were 
laid out in a Z-shaped orientation, at least 10 m from the 
edge to avoid edge effects. Along each transect, five sam-
pling points were laid at 10 m apart and soil samples col-
lected using a soil auger at 0–10, 10–20, and 20–40 cm 
depths. The five soil samples at each depth and within 
each transect were mixed to form a composite sample, 
producing three composite samples (one for each depth) 
for each transect and a total of nine composite samples 
(3 depths × 3 transects) from each enclosure and open 
grazing site. A total of 243 soil samples were obtained 
(27 sampling sites × 9 composite samples). About 0.5-kg 
sub-sample was placed in air tight plastic bags for soil 
moisture determination, extraction of microbial biomass 
carbon (MBC) and microbial biomass nitrogen (MBN). 
The remainder of the soil was air-dried, sieved through a 
2-mm mesh and stored at 4 °C in a refrigerator for physi-
cal and chemical analyses. Steel cylinders of 98.2  cm−3 
were used to obtain undisturbed soil samples for soil bulk 
density determinations, using the same sampling design. 
Within each transect, a 40 cm profile pit was dug in and 
one core sample taken in each depth, making a total of 
three core samples per transect.

Soil analysis in the laboratory
Soil water content was determined gravimetrically by 
oven-drying 100 g soil sub-sample at 105 °C to constant 
weight for 48 h [37]. Soil pH and electrical conductivity 

(EC) were determined in soil–water suspension in the 
ratio 1:2.5 (weight/volume). Soil pH was measured using 
a glass electrode pH meter (model: HI 2211, Hanna 
instruments), while EC was measured using a conductiv-
ity meter (model: HI 9812, Hanna Instruments). Soil bulk 
density (BD) was determined using core ring method by 
oven-drying core samples at 105 °C for 48 h [38], and par-
ticle size distribution using the hydrometer method [39]. 
Total soil organic carbon (SOC) was determined using 
the wet oxidation method [40], total nitrogen (TN) was 
determined using the Kjeldahl method [41] and cation 
exchange capacity (CEC) was determined by the ammo-
nium acetate  (NH4OAc) method as described by [42].

Physical fractionation was used to determine particu-
late organic carbon content, associated with the sand 
fraction (2000–53  μm), following procedures by Cam-
bardella and Elliott [43]. Approximately 20-g of sieved 
(< 2.0 mm) air-dried soil sub-sample was dispersed with 
70 ml of 5-g l−1 sodium hexametaphosphate solution and 
the suspension was passed through a 53 μm sieve using 
a jet distilled water. The material retained in the sieve 
was dried at 45 °C for 48 h in a forced air oven. The oven-
dried material was ground and analyzed for organic car-
bon by the wet oxidation method [40] and TN using the 
Kjeldahl method [41].

Chloroform fumigation-extraction method was used 
to determine MBC and MBN contents in soil [44]. Eth-
anol-free chloroform was used to fumigate 10 g of field-
moist soil samples for 24  h in a vacuum desiccator at 
room temperature. Another set of the same soil samples 
were not fumigated. The soluble C from the fumigated 
and non-fumigated samples was extracted with 50  ml 
of 0.5-M  K2SO4 solution. The extracted soil MBC was 
measured spectrophotometrically at 600  nm. The dif-
ference between the extracted C in the fumigated and 
non-fumigated soils represented the microbial biomass C 
[45]. MBN was determined by digesting 20 ml of the soil 
extract using Kjeldahl digestion and the digest analyzed 
for total N. Correction factors (kc) of 0.45 and 0.54 were 
used for MBC and MBN respectively [46, 47].

Statistical analysis
Effects of grazing systems and soil depths, and enclosure 
type and age on total SOC, SOC fractions, microbial 
biomass, and the interactions were analyzed by two-way 
analysis of variance (ANOVA) using Genstat 15th edi-
tion [48]. Means were separated using Fischer’s protected 
least significant difference (LSD) test at P ≤ 0.05. Pearson 
correlation analyses were conducted to establish the rela-
tionship between soil organic carbon fractions and soil 
texture and microbial biomass carbon using SPSS 20th 
version [49].
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Results
Soil physical and chemical characteristics
The sand, silt and clay contents were similar for all 
the grazing systems (Table  1). Soil bulk density in the 
0–10  cm was lowered significantly from 1.49  g  cm−3 in 
the OGR to 1.42 and 1.39 g cm−3 in CGE and GDE enclo-
sures respectively (P < 0.001, Table 1). Soil moisture con-
tent was generally higher in the enclosures relative to the 
OGR and increased with depth. The enclosure system did 
not significantly alter soil pH and CEC (Table 1).

Total soil organic carbon and nitrogen
Grazing system and soil depth had significant 
(P < 0.001) effect on total SOC concentration. The pro-
portion total SOC in the enclosures was 27.1% higher 
compared to OGR and the concentration decreased 
with depth (Table  2). However, the difference in SOC 
content between CGE and GDE was not significant. On 
the other hand, the values of total N content in CGE 

and GDE were similar but highly significant (P < 0.001) 
compared to total N content in OGR (Table 2). Within 
the enclosure systems, the age of enclosure had no 
effect on total SOC and TN concentrations (P = 0.52).

Particulate organic carbon
Grazing management significantly affected the con-
centration of POC (Table  3). The concentration of 
POC in the 0–10 cm increased significantly (P < 0.001) 
from 1.40 ± 0.21 in OGR to 2.01 ± 0.26 in CGE and 
2.28 ± 0.34 g kg−1 in GDE (Table 3). Unlike total SOC, 
the difference in POC content between CGE and GDE 
was significant (P = 0.01), but exhibited no significant 
variations among the age classes (P = 0.71). Relative 
to OGR, the proportion of POC in CGE and GDE was 
high by 38.8 and 55.2% respectively. In general, POC 
accounted for 24.5, 27.1 and 29.5% of the total SOC in 
OGR, CGE and GDE respectively.

Table 1 Soil physical and chemical properties under different grazing management systems in Chepareria, Kenya

Values are mean ± SD (n = 9). Different lowercase letters within the same column indicate significant differences between means at P ≤ 0.05

NS not significant, GDE grazing dominated enclosure, CGE contractual grazing enclosure, OGR open grazing rangeland, CV% coefficient of variation

Grazing system Soil depth (cm) pH CEC Sand Silt Clay Moisture content BD
Cmol kg−1 % g  cm−3

GDE 0–10 6.1 ± 0.55 8.0 ± 1.03 78.7 ± 2.61 5.4 ± 1.62 13.6 ± 1.17 6.79 ± 2.27bc 1.39 ± 0.10bc

10–20 6.1 ± 0.30 8.3 ± 0.93 77.8 ± 2.52 5.7 ± 2.37 14.2 ± 1.09 7.28 ± 2.29abc 1.37 ± 0.05c

20–40 6.0 ± 0.34 9.1 ± 0.78 78.2 ± 2.52 6.0 ± 2.00 14.0 ± 1.15 8.16 ± 2.23ab 1.36 ± 0.06c

CGE 0–10 6.2 ± 0.22 8.2 ± 0.75 81.3 ± 1.29 7.8 ± 1.60 13.4 ± 1.21 6.32 ± 2.76c 1.42 ± 0.10abc

10–20 6.0 ± 0.61 8.7 ± 0.95 80.6 ± 1.57 8.0 ± 2.23 13.7 ± 1.16 6.83 ± 2.68bc 1.46 ± 0.10ab

20–40 6.2 ± 0.24 8.6 ± 1.16 80.6 ± 1.60 7.7 ± 2.88 13.4 ± 1.18 8.51 ± 2.44a 1.45 ± 0.05ab

OGR 0–10 6.3 ± 0.27 9.0 ± 0.92 79.5 ± 1.61 6.8 ± 1.88 13.8 ± 1.29 5.85 ± 2.51c 1.49 ± 0.05a

10–20 5.2 ± 0.56 8.6 ± 0.95 78. 9 ± 1.57 7.3 ± 2.09 13.7 ± 1.30 6.38 ± 2.55c 1.47 ± 0.06a

20–40 5.0 ± 0.24 8.7 ± 0.90 78.7 ± 1.48 7.2 ± 1.75 13.9 ± 1.17 6.78 ± 2.22bc 1.47 ± 0.06a

LSD0.05 NS NS NS NS NS 1.13 0.07

cv% 6.6 10.7 2.4 31.8 8.7 15 5.2

P-value 0.13 0.56 0.16 0.08 0.168 0.01 < 0.001

Table 2 Soil organic carbon and  total nitrogen concentrations at  three depths under  different grazing management 
systems

Values are mean ± SD (n = 9). Values with different uppercase letters across the rows (grazing systems) and the lowercase letters within columns (soil depths) are 
significantly different at P < 0.05

OGR Open grazing rangeland, CGE contractual grazing enclosure, GDE grazing dominated enclosure

Depth (cm) Total soil organic carbon (g kg−1) Total nitrogen (g kg−1)

OGR CGE GDE OGR CGE GDE

0–10 4.93 ± 0.69Ba 6.22 ± 0.78Aa 6.61 ± 0.89Aa 0.53 ± 0.07Ba 0.63 ± 0.08Aa 0.65 ± 0.08Aa

10–20 4.88 ± 0.65Ba 5.86 ± 0.67Aa 6.28 ± 0.99Aa 0.58 ± 0.11Ba 0.63 ± 0.08Aa 0.61 ± 0.07ABa

20–40 4.36 ± 0.74Bb 5.57 ± 0.57Ab 5.47 ± 0.77Ab 0.52 ± 0.10Bb 0.61 ± 0.08Aa 0.59 ± 0.07Ab

Pooled mean 4.72 ± 0.73B 5.88 ± 0.72A 6.12 ± 1.00A 0.54 ± 0.09B 0.62 ± 0.08A 0.62 ± 0.08A
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Microbial biomass carbon and nitrogen
Enclosures significantly increased MBC and MBN, with 
higher concentrations observed in the 0–10 cm depth in 
all the grazing systems (P < 0.001, Table 4). Compared to 
the mean MBC recorded in OGR, the MBC contents in 
CGE and GDE significantly increased by 13.9% and 30.5% 
(P < 0.001). Within the enclosures, significantly higher 
concentration of MBC was observed in GDE relative to 
CGE (P = 0.01). However, MBC and MBN concentrations 
were similar across the enclosure age classes (P = 0.63 
and 0.97 for MBC and MBN respectively).

Relationship between SOC, TN, POC and Microbial biomass
Total SOC exhibited significant (P < 0.001) positive corre-
lation with TN, POC and MBC at all soil depths, but was 
only significant with PN at 10–20  cm depth (Table  5). 
Total nitrogen showed significant relationship with POC 
at all soil depths and with MBC at the surface 0–10 cm 
only. The POC positively associated with MBC at all soil 
depths with the relationship being stronger at the surface 
0–10  cm (r = 0.63) compared to 10–20 and 20–40  cm 
depths (r = 0.57 and 0.41 respectively) (Table 5).

Discussion
Similarities in soil pH, texture and CEC indicated that 
areas inside enclosures were comparable to the commu-
nal grazing lands prior to the establishment of enclosures 

and that differences in the measured variables among 
the studied sites were caused by land use change and not 
by inherent site variability. Low CEC indicated the defi-
ciency of significant amounts of exchangeable cations 
such as  Ca2+,  Mg2+, and  K+ [50]. Despite the fact that the 
top-soil bulk density in all the grazing systems were gen-
erally below the root-restricting value of 1.80 g cm−3 for 
loamy sand soils [51], the lower bulk density under GDE 
and CGE indicated the potential of enclosures to improve 
soil physical properties such as compaction that hamper 
critical soil functions, like the capture, storage and sup-
ply of water for plants [52]. This result agreed with [53] 
who showed that grazing exclusion sites reduced soil 
bulk density compared to the adjacent continuous graz-
ing sites in the sandy grassland of Inner Mongolia, China. 
Higher soil moisture content in CGE and GDE could per-
haps be as a result of the improved soil physicochemical 
properties. The reduced soil bulk density in the enclosed 
systems may have increased the rate of water infiltration 
in the soil due to high pore space. As indicated by [54], 
low water infiltration rates in degraded grasslands rela-
tive to enclosed sites were due to the high soil compac-
tion induced by the grazing livestock. On the other hand, 
higher SOC in the enclosures increased the capacity of 
the soil to retain moisture [55]. Increase in moisture with 
depth may be due to high evaporative loss at the soil sur-
face than in the deep soil horizons.

Table 3 Distribution of particulate organic carbon with depth in three grazing systems in Chepareria, Kenya

Values represent mean ± SD (n = 9). Values with different uppercase letters across the rows (grazing systems) and the lowercase letters within columns (soil depths) 
are significantly different at P < 0.05

GDE grazing dominated enclosure, CGE contractual grazing enclosure, OGR open grazing range

Depth (cm) Particulate organic carbon (g kg−1) Particulate organic nitrogen (g kg−1)

OGR CGE GDE OGR CGE GDE

0–10 1.40 ± 0.21Ca 2.01 ± 0.26Ba 2.28 ± 0.34Aa 0.19 ± 0.12Aa 0.16 ± 0.04Aa 0.16 ± 0.03Ab

10–20 1.20 ± 0.24Cb 1.52 ± 0.26Bb 1.80 ± 0.25Ab 0.17 ± 0.07Aa 0.18 ± 0.02Aa 0.18 ± 0.04Aab

20–40 0.88 ± 0.15Bc 1.31 ± 0.16Ac 1.32 ± 0.19Ac 0.18 ± 0.04Aa 0.18 ± 0.05Aa 0.20 ± 0.03Aa

Pooled mean 1.16 ± 0.30C 1.61 ± 0.37B 1.80 ± 0.50A 0.18 ± 0.07A 0.17 ± 0.05A 0.18 ± 0.04A

Table 4 Distribution of microbial biomass carbon and nitrogen with depth in three grazing systems in Chepareria, Kenya

Values represent mean ± SD (n = 9). Values with different uppercase letters across the rows (grazing systems) and the lowercase letters within columns (soil depths) 
are significantly different at P < 0.05

GDE grazing dominated enclosure, CGE contractual grazing enclosure, OGR open grazing rangeland

Depth (cm) Microbial biomass carbon (µg g−1) Microbial biomass nitrogen (µg g−1)

OGR CGE GDE OGR CGE GDE

0–10 77.08 ± 5.25Ca 88.22 ± 6.16Ba 96.63 ± 5.31Aa 37.57 ± 2.01Ba 38.44 ± 2.26Ba 40.9 ± 5.68Aa

10–20 73.67 ± 4.27Cb 81.05 ± 3.74Bb 94.10 ± 5.55Aa 36.24 ± 2.50Aa 37.57 ± 3.45Ab 37.89 ± 3.30Ab

20–40 32.05 ± 7.25Cc 38.94 ± 10.42Bc 47.77 ± 6.04Ab 18.01 ± 3.71Cb 22.09 ± 3.04Ac 21.64 ± 3.34Ac

Pooled mean 60.93 ± 21.36C 69.40 ± 23.04B 79.50 ± 23.28A 31.97 ± 7.49B 31.34 ± 10.00B 33.48 ± 9.49A
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Irrespective of land use, the amounts of SOC and TN 
in soil are determined by the balance between organic 
matter inputs and losses [56]. The significantly higher 
level of SOC and TN in the enclosures compared to the 
open grazing land was probably because of the reduced 
soil disturbance by grazing animals. This prompted the 
production of aboveground biomass [36], thereby facili-
tating the accumulation and storage of C into the soil and 
its mineralization releasing nitrogen. According to [36, 
53, 57], high removal of forage by the grazing animals 
in open grazing lands reduces herbaceous vegetation 
cover and accumulation of aboveground biomass. Con-
sequently, this reduced the amount of C incorporated 
into the soil in open grazing lands. In addition, the high 
bulk density in the surface 0–10  cm and low soil mois-
ture content in OGR could have reduced the input of 
soil organic matter by hampering storage and supply of 
water for plant growth [52, 54]. The reduction in SOC 
with increasing soil depth in all grazing systems suggests 
that organic matter accumulation in the surface 0–10 cm 
was higher than in the 10–20 cm and 20–40 cm depths. 
Higher SOC in the 10–20 cm and 20–40 cm in CGE and 
GDE relative to OGR could be as a result of the reduced 

grazing activities, which promoted root growth and accu-
mulation of root biomass [33]. This facilitated the incor-
poration organic C in the subsoil. The reduction in SOC 
content with increasing soil depth is consistent with pre-
vious research in semi-arid rangelands in Tigray, Ethiopia 
and Inner Mongolia in China [7, 58]. These results cor-
roborate with studies conducted in semiarid grasslands 
in Northern and Eastern Ethiopia and in Northwestern 
Kenya where higher soil organic C in enclosures was 
attributed to increased biomass production and reduced 
trampling by the grazing livestock [7, 8, 19]. Age of enclo-
sure did not influence SOC levels because enclosures 
are continuously used for periodic grazing. This agrees 
with other studies in the area [59, 60]. Furthermore, the 
~ 30 years of existence of enclosures in the area could be 
a short time to detect the changes in total organic carbon 
[61].

The higher concentration of POC in the enclosures 
suggested that the accumulation of organic matter was 
higher in the fenced areas than in the open grazing 
areas. Compared to total SOC, the considerably higher 
POC content in GDE than in CGE implied that POC 
is more sensitive to changes in grazing management. 

Table 5 Linear correlation analysis of SOC, TN, POC, PON, MBC and MBN in the three soil depths (n = 81)

Values are correlation coefficient, r

SOC total soil organic carbon, TN total nitrogen, POC particulate organic carbon, PON particulate organic nitrogen, MBC microbial biomass carbon, MBN microbial 
biomass nitrogen

* Denotes significant correlation at the 0.05 level

** Denotes significant correlation at the 0.01 level: others are not significant

Depth (cm) SOC TN POC PN MBC MBN

0–10

 SOC –

 TN 0.71** –

 POC 0.86** 0.70** –

 PN 0.06 0.10 0.04 –

 MBC 0.57** 0.46** 0.63** 0.18 –

 MBN 0.32** 0.10 0.38** 0.01 0.21* –

10–20

 SOC –

 TN 0.54** –

 POC 0.81** 0.42** –

 PN 0.29** 0.14 0.25* –

 MBC 0.40** 0.06 0.57** 0.15 –

 MBN 0.04 0.10 0.03 0.16 0.18 –

20–40

 SOC –

 TN 0.66** –

 POC 0.91** 0.65** –

 PN 0.16 0.19 0.14 –

 MBC 0.30** 0.09 0.41** 0.10 –

 MBN 0.17 0.14 0.17 0.00 0.05 –
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The results were consistent with [62, 63] who reported 
that particulate organic carbon responds to changes in 
grazing management compared to total SOC. Higher 
concentration of POC in GDE relative to CGE and 
OGR may be due to the lower grazing pressure which 
reduced soil disturbance. The reduced soil distur-
bance permitted the protection of soil organic matter 
from decomposition. According to [64, 65], trampling 
by livestock disintegrates soil macro-aggregates thus 
exposing soil organic matter to decomposition. The 
incorporation and stabilization of particulate organic 
matter into soil aggregates is a dominant factor for 
protecting organic carbon in grazing lands [66–68]. 
In addition, the higher herbaceous vegetation cover 
observed in CGE and GDE compared to OGR [36], 
greatly contributed to the conservation of POC in the 
enclosures by reducing erosion. Higher levels of POC 
in the surface 0–10  cm soil compared to 10–20 and 
20–40 depths suggest that plant roots supplied more 
organic matter in the surface soil compared to the sub-
soil. The sandy nature of soils in this study (Table  1) 
implies that the POC have low colloidal protection, 
and consists mainly of partially humified plant resi-
dues. The proportion of POC of the total SOC in this 
study (24.5–29.5%) was within the reported ranges of 
between 2 and > 50% in semiarid grasslands [69–71].

Similar to the trends observed with POC, the sig-
nificantly higher contents of MBC and MBN in the 
GDE and CGE compared to OGR was attributed to 
the increased concentration of POC in the enclosures 
which acted as a source of energy for soil microbiota. 
This was supported by the significant positive cor-
relation exhibited between MBC and POC in all soil 
depths. Moreover, the significant decrease in MBC 
and MBN content with depth in all the grazing systems 
indicated a higher potential for organic matter inputs 
from root exudates and plant litter in the surface soil 
relative to the deeper soils [72]. These results were 
consistent with studies by Wu [6, 19] in a semi-arid 
rangeland in North-Western Kenya and Hulunbuir 
grassland of Inner Mongolia where higher microbial 
biomass C and N contents were recorded in enclosed 
areas than in the open grazing lands. The range of 
microbial biomasses C recorded in this study (32.1–
96.6 μg g−1 soil) was relatively low compared to those 
recorded in Baringo County in Kenya (73–156  μg  g−1 
soil) [19]. This could be attributed to the differences 
in soil type and management strategies in the two 
areas. However, it has been recognized that microbial 
biomass recovers slowly in sandy soils in semiarid cli-
mates [64, 73]. Nonsignificant variations in POC and 
microbial biomass levels among the enclosure age 

classes could be the short residence time soluble frac-
tions of organic C [74, 75].

Conclusions
This study showed that the soils in the semi-arid range-
lands of West Pokot County are very fragile. Relative to 
the enclosure systems, continuous grazing in the open 
grazing land caused a considerable increase soil bulk den-
sity and additional loss of total SOC, total N, POC, and 
microbial biomass contents. The observed variations in 
all these parameters indicated that the communal graz-
ing lands were in a degraded state. This may portray seri-
ous consequence for soil quality, plant growth and loss 
of livelihood in tropical rangelands where grazing is the 
major land-use. Restoration of the degraded grazing land 
via the establishment of pasture enclosures increased the 
contents total SOC and total N and reduced soil bulk 
density. The concentrations of POC, MBC and MBN 
were considerably higher in GDE than in CGE. The 
results supported the hypothesis that GDE enclosures are 
more effective to restore degraded soils than CGE enclo-
sures. This indicates that the degraded soils in the open 
grazing land can indeed recover following the establish-
ment of enclosure. The POC and MBC were more sensi-
tive to grazing management than total SOC and can be 
used as indicators of the soil C dynamics in semi-arid 
rangelands. Therefore, this study demonstrated that con-
trolling livestock grazing through the establishment of 
enclosures is integral to increase SOC stocks or reduce 
its losses; a precondition for improving soil quality and 
climate change mitigation. Future research should focus 
on enclosures carrying capacity and seasonal ecosystem 
dynamics of carbon and nitrogen to better understand 
the ecology of this fragile ecosystem.
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