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Abstract 

Background: Old-growth and primeval forests are passing through a natural development cycle with recurring 
stages of forest development. Several methods for assigning patches of different structure and size to forest develop-
ment stages or phases do exist. All currently existing classification methods have in common that a priori assump-
tions about the characteristics of certain stand structural attributes such as deadwood amount are made. We tested 
the hypothesis that multivariate datasets of primeval beech forest stand structure possess an inherent, aggregated 
configuration of data points with individual clusters representing forest development stages. From two completely 
mapped primeval beech forests in Albania, seven ecologically important stand structural attributes characterizing 
stand density, regeneration, stem diameter variation and amount of deadwood are derived at 8216 and 9666 virtual 
sampling points (moving window, focal filtering). K-means clustering is used to detect clusters in the datasets (num-
ber of clusters (k) between 2 and 5). The quality of the single clustering solutions is analyzed with average silhouette 
width as a measure for clustering quality. In a sensitivity analysis, clustering is done with datasets of four different 
spatial scales of observation (200, 500, 1000 and 1500 m2, circular virtual plot area around sampling points) and with 
two different kernels (equal weighting of all objects within a plot vs. weighting by distance to the virtual plot center).

Results: The clustering solutions succeeded in detecting and mapping areas with homogeneous stand structure. 
The areas had extensions of more than 200 m2, but differences between clusters were very small with average silhou-
ette widths of less than 0.28. The obtained datasets had a homogeneous configuration with only very weak trends for 
clustering.

Conclusions: Our results imply that forest development takes place on a continuous scale and that discrimination 
between development stages in primeval beech forests is splitting continuous datasets at selected thresholds. For 
the analysis of the forest development cycle, direct quantification of relevant structural features or processes might be 
more appropriate than classification. If, however, the study design demands classification, our results can justify the 
application of conventional forest development stage classification schemes rather than clustering.
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Background
In primeval and old-growth European beech forests 
(Fagus sylvatica L.), stand replacement is mostly not 
caused by large disturbances like fire, severe windthrow 
or insect calamities. Instead, natural regeneration often 
takes place on a small scale initiated by the age-related 
dieback of single old trees leading to the formation of 
small gaps of ca. 100–250  m2. Subsequently, groups of 
saplings and young trees start to develop [1]. Advanced 
regeneration beneath the canopy of old trees is also fre-
quently observed [1, 2] and cover considerable portions 
of gap area at the time of gap formation [3]. Without 
human influence, it is thought that European beech for-
ests would represent multi-cohort forests on a small 
scale. It is, however, a matter of debate to which extent 
also large infrequent disturbances are driving stand 
dynamics and which area typically is covered by single-
cohort patches with more or less homogeneous structure.

Usually there is no information on the true age of trees 
in primeval beech forests. As a consequence of their 
multiple-cohort structure and the resulting complex 
individual growth patterns [2], “stand age” (i.e., the time 
since the last larger disturbance event) is not an appro-
priate attribute to characterize the development status 
of a certain patch of primeval beech forests, as the age 
of trees in primeval forests varies on small spatial scales 
[4]. Instead, classification into development stages and 
further subdivision into development phases of the forest 
development cycle [5] has been introduced by Leibund-
gut [6] and Korpeĺ [1] for European primeval forests and 
is widely accepted as a surrogate for stand age. Based on 
this categorization, different models have been developed 
to describe natural forest dynamics over time (e.g., [1, 
7–9]). Oliver and Larson [10] distinguish four different 
development stages for single- or multiple cohort stands: 
(1) the stand initiation stage occurs when a disturbance 
event causes partial or complete breakdown of the over-
story; (2) during the stem exclusion stage, competition 
is the main cause for mortality and stem number con-
tinuously decreases while living biomass is accumulat-
ing; (3) in the understory re-initiation stage, more light 
may reach the ground when suppressed trees die and tree 
saplings and small trees establish; and (4) during the old-
growth stage, large and senescent trees die and small to 
medium sized gaps form which are rapidly filled again by 
lateral branch growth of neighboring trees or by under-
story trees. In multiple cohort stands like primeval beech 
forests, cohorts in all of these stages may occur simulta-
neously and horizontally layered.

In forest ecosystem research, the concept of forest 
development stages is used among others for describing 
habitat quality for different organism groups [11–14] or 
for characterizing the development of important stand 

properties such as leaf area index or structural diver-
sity [15]. While it is convenient to describe and classify 
growth phases of single trees (e.g., through age or diame-
ter classes) and to distinguish development stages of sin-
gle-cohort stands, classification of multiple-cohort stands 
is much more difficult. In the past, distinction between 
development stages was mostly done with dichotomous 
keys which use thresholds of specific stand structural 
attributes at the plot level (SSA, for example basal area, 
height or amount of deadwood) [7, 8, 14, 16]. Recently, 
with the aid of computer algorithms, more sophisticated 
classification methods for development stages and phases 
were developed [17–19].

All these methods have in common that a priori 
assumptions about development stages and their charac-
teristic compositions with respect to the used SSAs are 
made. For example, the occurrence of a certain amount of 
deadwood is usually one of the criteria for a forest patch 
to be assigned to the terminal development stage (senes-
cence, breakdown stage [1, 17]). These approaches with 
parameter delimitation based on expert opinion neglect 
the possible existence of biologically-determined thresh-
olds in the structural data of old-growth forests, which 
could mark the transition from one development stage 
to another. Such breakpoints might occur if SSAs do not 
change gradually over time but when the stand struc-
ture adapts more rapidly after certain SSA thresholds are 
reached and/or discrete disturbance events change the 
intrinsic development. For example, the diameter distri-
bution of some primeval European beech forests peaks 
at mid-range diameters at breast height (DBH) [20]. This 
may indicate pulses of tree establishment caused by past 
disturbances. Another explanation is that trees reach the 
upper canopy at these DBH-classes which reduces com-
petition with larger individuals and mortality rates drop 
immediately at such a site-specific diameter threshold 
[20]. We assume that similar effects can be observed and 
are more pronounced when multidimensional datasets 
of the stand structure (one dimension for each included 
attribute) of primeval forests are analyzed. Our hypoth-
esis is that multidimensional point clouds of such data-
matrices from primeval forests are not homogeneously 
distributed, but that spatially separable clusters do exist 
which are corresponding to the development stages of 
the natural forest development cycle.

To test this hypothesis, we use stand structural data 
from two completely mapped primeval beech stands 
in Albania: Mirdita and Rajca. A moving window (focal 
filter) approach is used to aggregate the SSA-data in 
virtual plots over the entire area of two forests. Two 
parameters of the moving window (virtual plot size and 
kernel) were varied in a sensitivity analysis to ensure 
that potentially existing effects are not missed because 
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of an inappropriate study design. We then applied an 
unsupervised classification algorithm (k-means cluster-
ing) to detect potentially occurring clusters in the stand 
structural dataset without making a priori assumptions 
about potential thresholds. According to our hypothesis, 
potentially occurring clusters would correspond with the 
stages of the natural forest development cycle. K-means 
clustering requires the pre-specification of the number 
of clusters k. To avoid assumptions about the number of 
occurring stages, we used different values for k (2, 3, 4, 
and 5).

Our results may help to understand the fundamentals 
which form the basis of the classification of forest devel-
opment stages and phases. We are asking the question: 
Does the multidimensional distribution of a primeval 
forest SSA-data matrix show a clustered configuration 
with clearly distinguishable thresholds between clusters? 
If so, we assume that such thresholds mark site-specific 

transitions from one development stage to another. Such 
thresholds would represent prime candidates to be used 
in site-adapted classification schemes. If no clustered 
configuration appears, this would point towards a rather 
homogeneous and continuous distribution of the SSA 
data-matrix in higher dimensional space, indicating the 
lack of predetermined thresholds. In that case, the selec-
tion of thresholds based on ecological theory and by 
expert opinion would be justified.

Results
Emergence of clusters at different observation scales
In Fig. 1 the first principal component (PC) of the aggre-
gated SSA data-matrices is plotted against the second 
to fourth principal component and results of k-means 
clustering (k = 3) are depicted. In the Mirdita site small 
observation scales (virtual plot sizes of 200  m2 and 
500  m2) lead to a uniform and homogeneous point 

Fig. 1 Biplots of the first principal components (PC) of inventory data of two primeval beech forests (7 attributes, see Table 2). The colored area and 
the contour lines represent PC-scores. Arrows depict PC-loadings. A moving window was used to aggregate the datasets from completely mapped 
data at four observation scales (window sizes; separated by grey shaded areas). Contour lines mark areas with equal point densities (in total 8216 
points in Mirdita and 9666 points in Rajca). Coloring represents the results of k-means clustering with 3 clusters (red, green and blue; color mixing 
indicates overlap of two or more clusters). A uniform kernel was used for the moving window (equal weighting of all objects within the window). 
For results of a bivariate normal kernel (weighting of objects by their distance to the window center) see Additional file 1: Figure S1



Page 4 of 14Glatthorn et al. BMC Ecol           (2018) 18:47 

distribution of the SSAs (panels A1 to B3). No obvious 
groups are visible, and k-means clustering leads to an 
arbitrary division of the point clouds. With an observa-
tion scale of 1000 m2, a vague structure is emerging. At 
least two bigger clusters are visible when PC2 or PC3 is 
plotted against PC1 (panels C1 and C3). When looking at 
PC3 and PC1 (panel C2) several smaller subclusters are 
apparent as well. All clusters are not clearly distinguished 
from one another but blurring at their borders. At the 
1500 m2-scale the image is similar as at the 1000 m2-scale 
with two main clusters and several smaller and blurring 
subclusters. Regardless of the number of clusters used for 
the clustering algorithms, the clustering quality did not 
change. No optimal number of stages to describe the for-
est development was detected.

In the Rajca site the trend of a somewhat better dis-
criminability with increasing plot size is visible as well 
but clusters do only emerge at the largest scale of 1500 m2 
(panels H1 to H3). At smaller scales (panels E1 to G3) 
some peaks are visible (e.g., panels F1 to G2), but possible 
clusters are not very well distinguished.

The bivariate normal kernel provides a very similar pic-
ture as the uniform kernel (Additional file 1: Figure S1). 
The overall appearance of the contour plots of the prin-
cipal component scores generated by the normal kernel 
is a bit smoother with a less ragged shape of the point 
clouds, but clusters are not better distinguishable from 
each other.

Quality of the clustering
Average silhouette widths obtained for the cluster-
ing of the SSAs by this study were mostly below 0.25 
(Table 1). Silhouette widths typically lie between 0 and 
1, small negative values are possible as well. Values 

close to one imply a strong structure in the data. Aver-
age silhouette widths smaller than 0.25 are indicative 
for `no substantial structure’ according to [21]. There 
was a slightly better separability of the datasets at the 
greater observation scales in Mirdita with a maximum 
value of 0.27 of the 5-cluster solution at the 1500  m2-
scale. Except for that, the cluster solutions did have an 
equally low quality for all observation scales, both ker-
nels and study areas.

Between‑cluster differences in stand structural attributes
The relevance of each SSA for the specific clustering 
solution was analyzed with the between-cluster vari-
ances of the standardized SSA  (Varbetween, Fig.  2 for 
the data aggregated with the uniform kernel and Addi-
tional file 2: Figure S2 for the bivariate normal kernel). 
In Mirdita, N and  DBHmed (negatively correlated, see 
loadings of the principal components in Fig.  1) were 
of higher relevance than the other attributes for most 
of the cluster solutions. Other important factors were 
 Hmax and  Vlive (positively related), whereas the other 
attributes  (Vdead, Reg) were relevant for only some spa-
tial scales and clustering solutions. In Rajca, the most 
relevant attribute changed a lot between observa-
tion scales and cluster number. Even though there was 
no single attribute and no set of combined attributes 
which was most important for the determination of all 
clusters, differences between  Vdead of the clusters were 
almost always only minor. This attribute seemed to 
have negligible relevance for most clustering solutions.

Table 1 Average silhouette widths of the clustering solutions of stand structural data of two primeval beech forests

A moving window approach with a uniform and a bivariate normal kernel and of several observation scales (rows) was used. K-means clustering (k = 2 − 5, columns) 
was applied to obtain different clustering solutions

Uniform kernel Bivariate normal kernel

Number of clusters Number of clusters

2 3 4 5 2 3 4 5

Observation scale

Mirdita 200 m2 0.18 0.16 0.18 0.22 0.17 0.17 0.21 0.22

500 m2 0.18 0.19 0.21 0.22 0.18 0.18 0.21 0.17

1000 m2 0.20 0.22 0.24 0.24 0.19 0.21 0.23 0.23

1500 m2 0.20 0.26 0.26 0.27 0.20 0.24 0.23 0.25

Rajca 200 m2 0.22 0.19 0.22 0.23 0.21 0.21 0.23 0.22

500 m2 0.21 0.23 0.20 0.20 0.21 0.23 0.18 0.20

1000 m2 0.21 0.18 0.20 0.20 0.21 0.18 0.21 0.21

1500 m2 0.21 0.22 0.24 0.21 0.21 0.19 0.23 0.23
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Spatial representation of clusters
Maps of areas with similar stand structure differed 
greatly between the observation scales (Fig. 3 and Addi-
tional file 3: Figure S3). At low observation scales (200 m2 
and 500  m2, panels A and B) the mosaic-like structure 
of patches with a homogeneous stand structure belong-
ing to different clusters was more fine-grained with patch 
sizes often below 100 m2 (panels A and B). Single, dom-
inant features within the borders of a virtual plot often 
decided about the clustering outcome. But even at such 
small scales, large patch sizes stretching over 1  ha and 
more occurred. Many of the patches touched the outer 
limits of the study area, so their absolute size is unknown. 
To accurately estimate patch-size distributions, the study 
area size would have to be several times larger.

At greater observation scales (1000  m2 and 1500  m2, 
panels C and D), the overall appearance of the patch dis-
tribution was a lot smoother. Patch sizes were bigger and 
often stretched over 200 m2 and more. Single features did 
not dominate the clustering process anymore.

Maps of the same observation scale but with differing 
numbers of clusters produced similar results (Fig. 4 and 
Additional file 4: Figure S4). When the number of clus-
ters was increased, usually one cluster was split instead 
of creating a completely new classification of the points. 
The maps in Fig. 4 depict areas with homogeneous stand 
structures at a specific observation scale.

At all observation scales, the silhouette coefficient (red 
shade of pixels) was biggest in the areas close to patch 
borders. These horizontal transition zones between 
homogeneous forest patches were particularly hard 
to classify for the clustering algorithm. In the center of 
patches, areas with low silhouette coefficients were less 
frequent but did occur as well.

Discussion
The visualization of potentially existing clusters in the 
stand structural data with the first principal components 
did not reveal substantial aggregation of data points. 
On the contrary, only at greater observation scales of 
1000  m2 and 1500  m2 there were only slight peaks vis-
ible in the contour plots (Fig.  1 and Additional file  1: 
Figure S1). However, the low averages of the silhouette 
coefficients of all cluster solutions irrespective of obser-
vation scale indicate that these peaks are no evidence of 
the presence of real clusters in the data. The slight peaks 
appearing at greater observation scales might well be just 
an artifact of the size of the study areas and the high sim-
ilarity of points which are located close to one another. 
Additionally, even though both completely mapped areas 
were large (5  ha and 6  ha), it is likely that some com-
mon combinations of SSAs did just not occur within the 
boundaries of the study sites and are underrepresented in 
the datasets. These findings are consistent regardless of 

Fig. 2 Between-clusters variance of stand structural data (7 attributes, abbreviations see Table 2) of the primeval beech forests Mirdita (A1–A4) and 
Rajca (B1–B4). K-means clustering was used to detect clusters (2 to 5 clusters, panels 1 to 4). A moving window approach with a uniform kernel 
(equal weighting of all objects within the window) of several observation scales was used to aggregate the datasets (X-axis). For the results of a 
bivariate normal kernel see Additional file 2: Figure S2 (weighting of objects by their distance to the window center)
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the number of distinguished clusters. No optimal num-
ber of development stages which should be used for the 
characterizing the natural forest development could be 
detected. It is unlikely that the use of a larger amount of 
clusters than five would have resulted in different results 
with improved clustering quality.

The low discriminability of the data into clusters may 
also be caused by a more complex stand structure of 
beech primeval forests than anticipated by the model of 
cyclic, regularly returning development stages [19, 22]. 
The stochastic nature of tree growth and mortality and 
prevalence of site specific disturbance regimes may lead 
to acyclic, unexpected transitions between stages [22]. 

Such random processes are probably of high relevance 
for the formation of the stand structure and may result 
in a high, unpredictable variation of structural attributes 
on small spatial and temporal scales. Even though these 
authors [22] do not question the overall usefulness of the 
concept of development stages, their results suggest that 
for some applications, the concept may be too simplis-
tic. This is supported by recent analyses of gap dynam-
ics in natural beech forests [3, 23, 24] which suggest that 
disturbance events of varying intensities are frequently 
occurring and can cause complex dynamics which are 
difficult to capture with the classic concept of forest 
development stages. In forests, where major disturbances 

Fig. 3 Stem position maps of the primeval forest Mirdita with k-means clustering solutions of the structural data highlighted (3 clusters). Coloring 
of the background images indicates areas which were assigned to the same cluster (gray tone) and how well a point is represented by its cluster 
(silhouette coefficient, red tone). A moving window approach of several observation scales (200 m2, 500 m2, 1000 m2, 1500 m2, panels a to d) was 
applied to aggregate the structural datasets (7 attributes, Table 2) which was used by the clustering algorithm A uniform kernel was used for the 
moving window (equal weighting of all objects within the window). For results of a bivariate normal kernel (weighting of objects by their distance 
to the window center) see Additional file 3: Figure S3
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lead to single-cohort structures, potentially existing clus-
ters might have higher average silhouette coefficients and 
less blurring clusters than are observed in our forests.

The low quality of the clustering solutions suggests 
that, at least with respect to the studied variables, the 
natural forest development cycle does not lead to the 
emergence of clear thresholds in the SSA data-matrix 
between different development stages. This does not 
challenge the concept of classifying research plots into 
development stages in general, which has reliably and 
successfully been used to describe the forest develop-
ment cycle in many previous studies (e.g., [11–13, 16, 
25]). Instead, the results suggest that transitions between 

single stages are rather continuous. This is in agreement 
with other studies about the forest development cycle 
which show that patches of the same development stage 
or stand structure may take different pathways with 
gradually and continuously diverging composition of 
stand attributes [22, 26]. This supports the hypothesis of 
a continuous forest development life cycle as for exam-
ple formulated by [7, 27]. On the one hand, this illustrates 
limitations of the classical approach of splitting the forest 
development cycle into discrete stages, as this approach 
may not reflect the complexity of natural forest develop-
ment. This highlights the importance of analyzing single 
processes of forest development such as gap formation or 

Fig. 4 Stem position maps of the primeval forest Mirdita with k-means clustering solutions of the structural data highlighted (2 to 5 clusters, panels 
a to d). Coloring of the background images indicates areas which were assigned to the same cluster (gray tone) and how well a point is represented 
by its cluster (silhouette coefficient, red tone). A moving window of an observation scale of 500 m2 was used to aggregate the structural datasets (7 
attributes, Table 2). A uniform kernel was used for the moving window (equal weighting of all objects within the window). For results of a bivariate 
normal kernel (weighting of objects by their distance to the window center) see Additional file 4: Figure S4
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regeneration in the course of time as done for example by 
[3, 28]. On the other hand, such a classification approach 
has proven to be a useful tool in biodiversity studies, 
in which it is necessary to stratify larger areas of forest 
according to tree age or other structural features when 
designing the study and analyzing the data (e.g., [12, 13]). 
Thus, the commonly applied practice to select thresholds 
based on expert opinion, which fit best to the respective 
ecosystems, study designs and questions, has its justifica-
tion and will continually be used in future.

Even though the selected attributes to describe the for-
est structure in this study were selected with care, more 
suitable variables to reflect the natural forest develop-
ment cycle may exist. In compliance with current meth-
ods to describe development stages in the field, we used 
state variables like stand density, maximum tree height, 
regeneration abundance, and others (Table 2). Ecosystem 

processes and functions like mortality or biomass accu-
mulation and decay are not included neither in our 
selection of variables, nor in most other empirical stud-
ies addressing the classification of forest development 
stages. This is not because the importance of processes 
for forest development is neglected (in fact many authors 
state their relevance, e.g. [1, 10, 25]), but rather because 
such variables are much more difficult to monitor and 
suitable datasets for such analyses hardly exist. We can-
not rule out the possibility that including other variables, 
especially variables describing ecosystem processes and 
functioning, might have resulted in clearer clustering 
solutions than observed here. However, the assessment of 
ecosystem processes such as productivity or decay rates 
typically require measurements in a high temporal reso-
lution and are time- and labor-intensive. Until now, this 
prevented their consideration in classification approaches 
of the forest development cycle.

When using the uniform kernel (i.e. equal weighting 
of objects within a virtual plot) for the aggregation of 
the structural data of the forests, the resulting maps of 
the distribution of the SSA over the study area displays a 
grainy pattern (Fig. 5a). Points lying directly next to each 
other (2  m distance) can be largely different depending 
on whether a single prominent structural feature located 
close to the plot border, falls within the boundaries or 
not. Highest aggregated values of some SSAs (e.g., live 
wood volume; Fig.  2) do not occur in the direct vicin-
ity of single objects with high attribute values, but right 
in between two prominent objects. This is because the 

Table 2 Descriptions and abbreviations of plot-level stand 
structural attributes (SSA)

Abbr. Description

N Number of trees per hectare

DBHmed Median diameter at breast height

DBHiqr Interquartile range of diameter at breast height

Hmax Maximum tree height

Vollive Volume of living trees per hectare

Voldead Deadwood volume per hectare

Reg Proportion of the area covered by regeneration

Fig. 5 Stem position maps of the primeval forest of Mirdita. Circles mark coordinates of standing trees (green: alive; red: dead; radii proportional 
to diameter). Lines represent logs and green shaded areas outline regeneration patches (areas with a dense cover of trees with a diameter at 
breast height < 7 cm). The background raster images show results of a moving window (living tree volume) for an observation scale (window 
area) of 500 m2. a Results of a uniform kernel (equal weighting of all objects within the window), while for b a bivariate normal kernel was applied 
(weighting of objects by their distance to the window center)
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distribution of large trees is usually not random due to 
the influence of competition, but tends to be more reg-
ular at scales where competition between single trees 
dominates the spatial distribution of large trees (ca. 10 m 
and less; [29]). It is more likely to encounter multiple 
prominent objects within a virtual plot when its center is 
close to plot radius distance from such an object.

Effectively, the normal kernel aggregates attributes by 
calculating a weighted sum of all objects with weighting 
factors declining with distance from the plot center (see 
“Methods” section for details). This results in smoother 
distribution maps of the SSA when the normal kernel is 
applied with maximum aggregated values close to promi-
nent objects (Fig. 5b). For the analysis of the relationship 
between structural features and other ecosystem attrib-
utes like regeneration or herb cover, the normal kernel 
could turn out to be superior. For example, when two 
bigger trees are located at opposite sides of a plot, half 
of their canopies and root systems reach beyond the plot 
border. Their influence in terms of light interception or 
water uptake at plot level is likely lower at the plot level 
than that of a single tree standing close to the plot center. 
The normal kernel accounts for this by assigning a higher 
weighting factor to the tree in the plot center.

In contrast to our hypothesis, the use of a bivariate 
normal kernel for data aggregation did not improve the 
performance of the clustering algorithm. Silhouette coef-
ficients of the cluster solutions and visual appearance of 
the contour plots were equally poor. No otherwise hid-
den clusters or relationships between attributes did 
emerge when features more distant from a location in a 
primeval forest were downweighted for the assessment of 
its stand structure. All sort of different combinations of 
SSAs are equally likely and no clusters are present in the 
data structure. This does not discard the use of a bivariate 
normal kernel instead of a uniform kernel in general for 
the description of forest structure. For other applications, 
this approach still might be appropriate.

In many clustering solutions  DBHmed and stem density 
N seemed to be important attributes for the separation 
of the clusters. As both of these variables are negatively 
correlated to each other (high N being associated with 
a low  DBHmed and vice versa), they form one of the pri-
mary factors which were used by the clustering algorithm 
to differentiate between stages. The on average second 
most important factor used by the clustering algorithm 
was  Hmax together with  Vlive (which are positively related 
to each other). Both of these factors were arranged nearly 
orthogonal to each other in our study. This corresponds 
well with the selection of variables by [17] who used the 
distribution of N and basal area of live and dead trees to 
train a supervised classification algorithm. Other stud-
ies (e.g. [8] or [14]) only used maximum DBH, which is 

related to  Hmax. Since the cited studies used some addi-
tional variables that have not been addressed by us (e.g. 
canopy cover), this may explain the missing considera-
tion of N in these classification scheme.

The two trajectories of forest development identified 
in our study (N/DBHmed and  Vlive/Hmax) are consistent 
with the framework developed by [10]. Low N and  Vlive 
values correspond to the stand initiation stage, high  Vlive 
and low to high N occur during the old-growth stage, 
depending on the progress of tree senescence and how 
much light reaches the forest floor. High N and interme-
diate  Vlive reflect the stand exclusion and understory rein-
itiation stage. A stage characterizing a gap immediately 
after a disturbance event with the simultaneous break 
down of several trees (i.e. low N and low V) before stand 
initiation stage is missing in [10].

The ecological interpretation of these partly deviating 
results on the occurrence of stages should not be over-
stressed. Clearly, much variation exists in the results with 
respect to changing orders of the most relevant SSAs, 
depending on the observation scale and the number of 
clusters, which is difficult to explain in ecological terms. 
As there is no consistent trend with increasing observa-
tional spatial scale or number of clusters investigated, 
variation seems to be random and mostly unpredictable.

Most SSAs varied, similar to  Vollive, on small spatial 
scales. Such patterns are typical for the mosaic structure 
of primeval beech forests and a medium or large scale 
disturbance event does not seem likely in the recent past. 
However, even without major disturbances, there can be 
considerable change in the stand structure on a large spa-
tial scale, as is documented for the gap area by two sur-
veys within 10  years difference in a Slovakian primeval 
beech forest [3] or for tree species composition in a Slo-
vakian mixed old-growth forest [30]. Differences between 
the two study areas may have been caused by slightly 
deviating site conditions and stand structures in Mirdita 
as compared to Rajca (according to [8], see Table 3). The 
first site has not as good site conditions with more shal-
low soils and a lower dominant height resulting in a lower 
live tree volume. There was a slightly higher stem number 
and relative gap area in Mirdita but a somewhat higher 
basal area in Rajca. These differences may have resulted 
in a different average composition development stages 
in the two study areas. Even without larger disturbance 
events, such variation in stand structure may be a charac-
teristic element of primeval forests [19, 22] and thus may 
have resulted in different clustering solutions.

Tabaku [8] categorized the stands in Mirdita and Rajca 
into 9 different developmental stages based on the same 
data set as used for this study applying a dichotomous 
key. The results of both classification schemes showed in 
many cases only a slightly higher agreement than would 
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be expected from a random assignment of stages (anal-
ysis not shown). For example, the clustering solution 
with two clusters and a moving window size of 200  m2 
in Mirdita distinguished one cluster which included 
99% of the stand area covered by the category classified 
as “gap” by [8]. However, such a good agreement was an 
exception. On average, both classification schemes did 
not match very well. The thresholds used by [8], which 
are based on ecological theory and defined by expert 
knowledge, could not be reproduced by the clustering 
algorithms. This mismatch illustrates the difficulty of 
finding a classification scheme which does not underlie 
subjective assumptions but is still interpretable from an 
ecological perspective. As the differences between the 
clusters are rather small, random effects may influence 
the clustering solutions and a repeated run with the same 
approach could potentially result in clusters with differ-
ent characteristics. This hampers comparability between 
studies and to studies which use a classical classification 
scheme.

The low relevance of  Voldead for most of the clustering 
solutions is most likely because its spatial distribution 
across the study area is rather homogeneous and does 
not correspond well with the distribution pattern of other 
attributes. In contrast to earlier studies (e.g., [8, 17]), and 
in agreement with our results, [31] and [12] found that 
the amount of deadwood within a plot is not necessarily a 
good indicator for its development stage. The idea of high 
amounts of deadwood in the terminal stage and carry-
over effects to the growth stage bases on the assump-
tion of a strictly cyclic succession of development stages 
(i.e., → growth → optimal → terminal → growth → …, 
[1]). When tree cohorts of different ages are present at a 
forest patch and disturbance only causes a partial break-
down of the tree cover, transition from one development 
stage to any other may occur as described in depth by 
[22]. In conjunction with a high residual time of dead-
wood logs and snags up to 50 years [32], this may cause 
high deadwood amounts in any part of the development 
cycle. Deviating conclusions on deadwood persistence in 
the forest cycle by other studies may be caused by diverg-
ing classification methods. When the amount of dead-
wood is a key variable in a dichotomous key to assign 
development stages, conclusions about varying amounts 
of deadwood are circular reasoning.

At first glance, only moderate or missing relationships 
between the deadwood amount and forest development 
stage seem to be surprising because processes like mor-
tality and decay doubtlessly play central roles in natural 
forest dynamics. However, the total amount of dead-
wood may not be a good proxy for such processes, as 
it just describes the status quo and not the underlying 
dynamics. A classification of deadwood objects into 
decay classes, which account for elapsed time since tree 
death, or direct measurement of deadwood dynamics 
through repeated measurements or recording of respi-
ration rates may lead to results which are more closely 
linked to forest development stages.

K-means clustering does not result in clearly sepa-
rated clusters with distinct thresholds. However, the 
algorithms still lead to the objective splitting of the 
study sites into zones with maximum similarity within 
the same zone and maximum difference to areas 
of other zones (Figs.  3 and 4; Additional file  3: Fig-
ure S3, and Additional file  4: Figure S4). Areas of the 
same cluster in the maps were more likely subject to 
a similar development history. Large connected areas 
with a homogeneous stand structure (100 m to 200 m 
in length) give an impression, at which scale stand 
replacement takes place in primeval forests.

Patch sizes obtained by this method are, irrespective 
of the observation scale, all larger than patches identi-
fied for example by the classification into development 
stages with supervised algorithms as done by [17]. 
Besides the effect of different computational methods, 
different patch sizes may also be identified because 
of differing stand dynamics in stands with function-
ally diverse tree species compositions (e.g., mixtures 
of broadleaved and coniferous species in spruce-silver 
fir-beech stands as in [17] compared to almost pure 
beech stands investigated here) or a differing set and 
weighting of specific SSAs used in the different studies. 
Patch size may also depend on the number of develop-
ment phases distinguished. For example, [8] identified 
eight development phases with the consequence that 
observed patch size was smaller than in our study with 
separation of two to five stages.

Table 3 Basic stand structural attributes of the two study sites [8]

Stem density 
(N/ha)

Basal area 
 (m2/ha)

Live tree 
volume  (m3/ha)

Dead tree 
volume  (m3/ha)

Dominant 
height (m)

Regeneration 
density (N/ha)

Canopy 
cover (%)

Relative 
gap area 
(%)

Mirdita 331 37.2 559.3 40.4 31.7 29,844 86.16 6.6

Rajca 391 43.4 807.4 86.0 38.5 19,259 91.36 3.3
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Conclusions
The evaluation of the clustering process revealed that 
the point clouds of the structural data are rather homo-
geneous without clearly separated clusters in the data 
of the two investigated primeval forests. The clusters 
do not correspond well with development stages of the 
forest development cycle. This implies that the maps of 
the clusters are as well not representing development 
stages. However, they successfully and precisely outline 
areas with highest possible similarity within and high-
est possible distinctness between patches of the same 
category. Patch size and distribution of such clustering 
solutions may help to assess at which spatial scales pri-
meval forests are structured.

The low clustering quality shows that the forest 
development cycle is continuous and that any separa-
tion of development stages relying on stand structural 
data means to split a continuous point cloud. This is 
valid at least for primeval beech forests in Albania. 
These results help to better understand the procedure 
of forest development classification. Just as the classi-
fication of tree DBH into diameter-classes, which is a 
long-standing practice in forestry and forest ecology, 
the classification of development stages does separate 
a continuous multivariate point cloud of a set of SSAs 
of a natural forest into ecologically meaningful catego-
ries. We acknowledge that all classification schemes 
are a simplification of the complex processes which 
occur during natural forest development. Much insight 
could already be gained by looking separately at pro-
cesses of natural forest development like gap forma-
tion, regeneration or deadwood decay in the course 
of time instead of lumping all attributes together in a 
single classification scheme. However, disciplines like 
biodiversity research can benefit from such a simpli-
fication as it can be used, for example, to implement 
more efficient sampling designs through stratification 
of the study area. As we could not detect clusters in the 
point clouds, which would have suggested the existence 
of naturally superimposed thresholds, the current prac-
tice of selecting such thresholds with expert knowledge 
or with algorithms is justified for these approaches. We 
further suggest to apply our approach to other well-
studied primeval forests of the temperate zone to reach 
more general conclusions on the validity of clustering 
in the analysis of forest development cycles.

Methods
Study areas
Both study sites were located in mountainous terrain and 
surrounded by extensive primeval beech forests with-
out management impact. They are composed of a patchy 

mosaic of gaps and areas in different stages of the forest 
development cycle (documented by [8, 33]).

Mirdita (5 ha, 250 × 200 m) lies in the Munella moun-
tain range in northern Albania (41°55′ N–42°7′ N; 20°3′ 
E–20°15′ E). The terrain is sloping (25°–30°) and has a 
southeastern exposition. The soils are Cambisols with 
relatively high nutrient supply. There is a Mediterranean 
mountain climate with an annual mean temperature of 
ca. 6  °C, annual precipitation of ca. 2600  mm and high 
winter precipitation (values extrapolated from the closest 
weather station Domgjon at 5  km distance). F. sylvatica 
is the dominating tree species; there are minor shares of 
Abies alba Mill. and Acer pseudoplatanus L. The forest 
community can be assigned to the Fagetum asperuleto-
sum association.

The study site Rajca (6  ha, 400  m × 150  m) is located 
in the Shebenik-Jabllanica mountain ranges in the east 
of central Albania (41°14′ N, 21°07′ E, 1400  m–1450  m 
a.s.l.). The topography is as well sloping (20°–30°) with 
a southwestern exposition. There is no climate station 
close by to extrapolate annual temperature and precipita-
tion, but climatic conditions should be similar to Mirdita. 
The soil type is similar to Mirdita and the forest associa-
tion is also the Fagetum asperuletosum with minor shares 
of A. alba and A. pseudoplatanus.

Forest inventory
The forest inventory was carried out in September 1998. 
In both study sites, standing live and dead trees with a 
DBH ≥ 7  cm were inventoried. DBH, decay class of the 
dead trees [34], and the coordinates of each tree were 
recorded. The tree height of a subset (100 to 150 trees 
per study site) of all inventoried trees was measured; 
the height of the remaining trees was estimated from 
empirically derived relationships between DBH and 
stand height (stand height curves). Species identity, the 
coordinates of the log’s end points and the decay class of 
lying deadwood pieces were recorded and the log diam-
eters measured at the middle of the log. The extension 
of regeneration patches (areas covered by trees with a 
DBH < 7  cm) was approximated by polygons and the 
coordinates of all corner points within the study sites 
were recorded. For a detailed description of the inven-
tory’s general results see [8].

Tabaku [8] used the same dataset and a dichotomous 
key to classify the study area into 9 developmental phases 
(gap, regeneration, initial, early optimal, mid optimal, 
late optimal, plenter, terminal and decay). Frequency and 
spatial distribution of the phases showed a pattern typi-
cal for primeval beech forests with high proportions of 
the terminal (ca. 50%) and plenter phase (ca. 20%) (see as 
well [16] for a similar analysis in primeval beech forests 
in Slovakia).
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Calculation of stand structural attributes
We used a moving window (focal filter) approach which 
resulted in detailed maps of the distribution of the SSAs 
across the study areas (Fig. 5a). A geographic information 
system was used to place a regular grid of 2  m spacing 
over each of the study sites and virtual sampling points 
were established at each of the grid nodes. Seven SSAs 
were calculated for circular virtual plots centered at 
each of the sampling points (Table 2). To ensure that the 
boundaries of all virtual plots were located within the 
study areas, only sample points outside a 22 m (radius of 
the largest virtual plot size) wide buffer zone were used. 
In this way, matrices of structural data with the dimen-
sion 8216 × 7 (Mirdita) and 9666 × 7 (Rajca) were gen-
erated. We chose the attributes in Table  2 because they 
correspond well to variables used by previous approaches 
to classify forest development stages [8, 9, 18, 19, 30]. 
However, we did not assess the attributes separately for 
different diameter classes as suggested by [19] or [9]. The 
used SSA reflect some of the main state variables of for-
est development as for example described by Korpeĺ [1] 
or Oliver and Larson [10]. Variables describing matter 
fluxes or processes like productivity, decay rate or gap 
formation are perhaps even more important for the char-
acterization of forest development [24, 27] than state var-
iables and should optimally be included in classification 
schemes as well. However, as these variables are typically 
very time-consuming to measure, they are hardly ever 
available in datasets used for the classification of forest 
development stages.

Lying trees often crossed the borders of the virtual 
plots. To account for only partial coverage of lying trees 
by a virtual plot, logs were segmented into 50  cm long 
pieces and each segment was referred to by its center 
coordinates. The volume of each deadwood segment was 
approximated by a frustum of a cone and a correction 
factor depending on its decay stage was applied (1, 0.95, 
0.8 and 0.5). Decay classes according to [34] were used 
and ranged between 1 (fresh dead) to 4 (heavily decayed). 
The diameters at the segment’s beginning and end were 
estimated from the middle diameter of the respective log 
and an assumed tapering of 10 mm m−1.

Likewise, regeneration patches were rasterized into 
1 m2 elements to calculate the proportion of the virtual 
plot area covered by regeneration.

The spatial variability of SSAs changes depending on 
the spatial observational scale (virtual plot area around 
sampling points; [35]). Thus, to account for the effects of 
variable observation scales, the analysis was conducted at 
four different scales (200, 500, 1000 and 1500 m2.

The usual procedure of assessing the stand structure 
of forests is via research plots of different sizes and equal 
weighting of all objects within the boundaries of the plots 

(e.g., [36]). We hypothesized that equal weighting of all 
objects (uniform kernel) is not optimal because objects 
close to the plot border are influencing the stand struc-
ture at a specific point less than objects close to the plot 
center (for example because a considerable part of the 
canopy or root system of the trees at the plot border 
reaches beyond the plot borders). To test this hypoth-
esis, we additionally used a bivariate normal (Gaussian) 
kernel. With the normal kernel, the attributes of objects 
within a plot are not merely summed up, but a weighted 
sum is calculated with weighting factors decreasing with 
distance from the plot center. This resulted in smoother 
maps of the spatial distributions of the SSA (Fig. 5b). The 
bandwidths of the normal kernels were chosen to corre-
spond best to the dimensions of the uniform kernels: the 
integrated kernel density of a normal kernel equaled 0.95 
within the boundaries of the respective uniform kernel.

Graphical display and clustering of the structural data
For the graphical display of the structural data, principal 
component analysis (PCA) was used and the first four 
principal components were plotted against each other 
(Fig. 1). Prior to analysis, all SSAs were standardized to 
have zero mean and unit variance. To find potentially 
existing clusters in the data structure, k-means clustering 
with two to five clusters was applied [37]. The number 
of clusters (k) used by the algorithm corresponds to the 
number of development stages which might exist in the 
natural forest development cycle. A considerably higher 
clustering quality of one of the solutions would point 
towards the presence of a specific number of develop-
ment stages inherent to the natural development of the 
studied forests.

The quality of the clustering solutions was assessed 
with the average silhouette width [21]. This index 
ranges between one (indicating that a strong structure 
was detected) and small negative values (indicating that 
no structure was detected). The index takes the means 
of all silhouette coefficients of all individual data points. 
The silhouette coefficient of a single point assesses how 
well it is represented by its own cluster compared to 
the closest neighboring cluster. This is done by relat-
ing the average dissimilarity (e.g., Euclidean distance) 
of a point to all objects of its own cluster to the aver-
age dissimilarity of all objects of the neighboring clus-
ter. See [38] for details. All calculations of clusters and 
silhouette coefficients were done in R [39] using the 
package “flexclust” [40]. To analyze which SSAs were 
most relevant for the separation of the clusters of a 
specific cluster solution, the between-groups (clusters) 
variance of the standardized SSAs known from classi-
cal discriminant analysis was used  (Varbetween; [38]). For 
each data point the squared distance of its group mean 
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to the overall mean of the respective attribute is deter-
mined.  Varbetween is calculated by adding up the squared 
distances between the respective cluster mean and the 
overall mean for all data points and dividing this sum 
by the number of clusters minus one. A high  Varbetween 
of an SSA indicates that the cluster means were very 
different from the overall mean and therefore relevant 
for the discrimination between clusters.

Additional files

Additional file 1: Figure S1. Biplots of principal component analyses of 
stand structural data aggregated with a bivariate normal kernel.

Additional file 2: Figure S2. Between-clusters variance of stand structural 
data aggregated with a bivariate normal kernel.

Additional file 3: Figure S3. Mapping of clustering solutions of stand 
structural data aggregated with a bivariate normal kernel at several 
observational scales.

Additional file 4: Figure S4. Mapping of clustering solutions with 2 to 5 
clusters of stand structural data aggregated with a bivariate normal kernel.
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