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Abstract 

Background: The fall Armyworm (FAW) Spodoptera frugiperda (JE Smith), is currently a devastating pest throughout 
the world due to its dispersal capacity and voracious feeding behaviour on several crops. A MaxEnt species distribu-
tions model (SDM) was developed based on collected FAW occurrence and environmental data’s. Bioclimatic zones 
were identified and the potential distribution of FAW in South Kivu, eastern DR Congo, was predicted.

Results: Mean annual temperature (bio1), annual rainfall (bio12), temperature seasonality (bio4) and longest dry 
season duration (llds) mainly affected the FAW potential distribution. The average area under the curve value of the 
model was 0.827 demonstrating the model efficient accuracy. According to Jackknife test of variable importance, 
the annual rainfall was found to correspond to the highest gain when used in isolation. FAWs’ suitable areas where 
this pest is likely to be present in South Kivu province are divided into two corridors. The Eastern corridor covering 
the Eastern areas of Kalehe, Kabare, Walungu, Uvira and Fizi territories and the Western corridor covering the Western 
areas of Kalehe, Kabare, Walungu and Mwenga.

Conclusions: This research provides important information on the distribution of FAW and bioclimatic zones in 
South Kivu. Given the rapid spread of the insect and the climatic variability observed in the region that favor its devel-
opment and dispersal, it would be planned in the future to develop a monitoring system and effective management 
strategies to limit it spread and crop damage.
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Background
The Fall Armyworm (FAW) Spodoptera frugiperda (J.E 
Smith 1797) is native to tropical and subtropical Ameri-
cas [14, 20] and a major corn pest [30]. Its presence was 
first reported on the African continent in 2016 [20] and 

in Asia later on in 2018 [51, 52]. Whether FAW larvae is 
able to infest more than 80 crop species [18, 46], main 
damages were observed on grasses family (Poaceae) 
including corn, rice and sorghum [34]. Yield losses can 
reach up to 73% when 100% of the plants are infested 
with FAW [27]. According to Baudron et al. [5], maize 
infestation of  54.9% might have an impact on yield of 
approximately 12%. Due to its polyphagous feeding 
behavior and recent introduction in the African con-
tinent, FAW is expected to constitute a lasting threat 
to several important crops in African [20]. Studies on 
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the behavioral characteristics of FAW strains in the 
Western Hemisphere indicated that two main strains, 
namely on rice and on maize, are able to mate with 
each other despite the existence of hybridization bar-
riers [35, 38, 47, 50]. Both rice and maize strains can 
be found and collected from a single host plant species 
[29, 37, 47]. Given these characteristics, Nagoshi et al. 
[36] have even reported that the African infestation 
may represent a new hybrid population with potentially 
uncertain behavioral feeding characteristics to become 
a serious problem for Africa, including Democratic 
Republic of Congo (DRC).

The fall armyworm has only invaded areas that have 
a climate pattern similar to the native distribution, jus-
tifying the use of climatic Species Distribution Models 
(SDMs) for further predictive spreading [14]. In recent 
years, an increasing number of tools for spatial analy-
sis of species distribution at different spatial scales have 
emerged [21, 28]. These tools have become increasingly 
popular in ecology. Particularly, niche distribution mod-
els were widely used in many ecological applications [41]. 
In fact, several methods of SDMs, also known as eco-
logical niche modeling (ENM) have been developed [19]. 
In order to estimate the functional response related to 
various environmental variables [2], SDMs relate known 
locations of a species with their environmental character-
istics, and then predict the potential geographical range 
of that species [17]. According to Westbrook et al. [56], 
the initiation and displacement patterns of insect migra-
tions are dependent on these environmental factors.

Distribution of FAW has been investigated by Wang 
et al. [55] and Liu et al. [32] using SDM MaxEnt (Maxi-
mum Entropy). Also, the FAW distribution was modeled 
on a large scale using CLIMEX software integrating the 
species model “Wet tropical” [13]. Using similar software 
and two general circulation models (GCMs), Ramirez-
Cabral et al. [49] assessed the climate change impact on 
future suitability for FAW expansion. Furthermore, Early 
et  al. [14] used Species distribution models (SDMs) to 
forecast FAW global extent. However, FAW occurrence 
in South Kivu (Eastern DR Congo) has been reported by 
Cokola [10] but its distribution remains unknown. Sev-
eral areas in South Kivu are favourable to FAW develop-
ment according to suitable temperature, day length and 
precipitation during warm/wet season as provided by 
Abraham et al. [1].

Modeling potential distribution of species in rela-
tion to climatic conditions is an important tool to apply 
such as in South Kivu where FAW geographical distribu-
tion is still unknown. A FAW modeled proposal will be 
useful for further FAW monitoring and management in 
case of high scale infestations. Therefore, this study aims 
to determine bioclimatic zones and establish potential 

distribution of FAW in South Kivu, eastern Democratic 
Republic of Congo (DRC).

Results
Bioclimatic zones of the South Kivu province
Three bioclimatic zones obtained by clustering using bio-
climatic data were presented (Fig. 1). The respective char-
acteristics (mean ± standard error) of each zone are given 
in Table  1. Zone 1 is mainly characterized by very high 
mean daytime temperature range and rainfall parameters 
(seasonality, duration for the wettest period, in the wet-
test quarter and annual values). Furthermore, it has very 
low temperature means (annual, for warmest and coldest 
quarters, for hottest month and potential evapotranspira-
tion). Also, zone 2 is characterized by very high isother-
mal and specific rainfall conditions (during driest period, 
annually, for wettest quarter and moisture index for dry 
quarter). In addition, it is characterized by very short 
duration of dry season, very low temperature seasonality 
and annually, annual moisture index, mean daytime tem-
perature range. Finally, zone 3 was characterized by very 
high annual temperature and for warmest quarter, long-
est dry season, very high annual moisture index. How-
ever, it was also characterized by very low annual rainfall 
and for wettest quarter, isothermality and moisture index 
of the dry quarter. Zones 1, 2 and 3 represented high, low 
and medium altitude areas respectively.

Model performance
In this study, from the ROC curves, AUC values were 
used to evaluate the performance of the MaxEnt model. 
Many studies showed that an AUC of high values leads 
to better results that significantly differed from the ran-
dom predictions. The next picture is the receiver operat-
ing characteristic (ROC) curve showing the performance 
of the FAW MaxEnt model. The prediction accuracy of 
FAW MaxEnt model was found to be acceptable (AUC 
mean of 0.827 ± 0.033, Fig. 2) according to the identified 
evaluation criteria.

The suitable areas of FAW in South Kivu province are 
divided into two corridors (Fig. 3): one covering eastern 
Kalehe, Kabare, Walungu, Uvira and Fizi territories and 
another the western areas of Kalehe, Kabare, Walungu 
and Mwenga territories, southern Shabunda and north-
western Fizi territories. The most suitable areas for FAW 
in South Kivu are mostly located in bioclimatic zone 3. 
In bioclimatic zones 1 and 2, the probabilities of FAW 
occurrence are very low (medians below 0.063). As for 
bioclimatic zone 3, the probabilities of occurrence are 
relatively higher, with a median of 0.29. In South Kivu, 
FAW are most likely to be found in areas characterized 
by very high annual temperature range, longest dry sea-
son, very high annual moisture index. Furthermore, these 
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Fig. 1 Bioclimatic zones of South Kivu. The zones are indicated in different colors on the map. This figure was created by the authors using ArcMap 
version 10.6 (https ://deskt op.arcgi s.com/fr/arcma p/)

https://desktop.arcgis.com/fr/arcmap/
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zones are also characterized by very low rainfall (annu-
ally, in the wettest quarter, during the wettest month).

Analysis of variable contributions
The estimates of relative contributions of the environ-
mental variables to the FAW MaxEnt model are pre-
sented (Figs.  4, 5) showing that bio12 (Annual rainfall) 
played a major role in the FAW spread. Furthermore, 
the environmental variable with highest gain when used 
in isolation was bio12 (Annual rainfall) according to the 
Jackknife test of variable importance (Fig.  5). This envi-
ronmental variable also decreases the most the gain while 
omitted, but also having the most useful information by 
itself and much more that is not available in the other 
variables. The bio12 variable was highly correlated with 
bio7 (Annual temperature range), bio13 (Rainfall of wet-
test month), bio16 (Rainfall of wettest quarter) and mi 
(Annual moisture index). Thus, it appears that these four 
variables also play a major role in the speed of FAW in 
South Kivu.

Response of variables to suitability
The mean responses of variables to FAW habitat suit-
ability over 100 replicate MaxEnt runs (red) and the 
mean ± one standard deviation (blue, two shades for 

categorical variables) are presented. The bio12 (annual 
rainfall with less than 1600  mm) variable plays a major 
role in the FAW distribution according to the Jackknife 
test (Fig.  5). Furthermore, with a strong negative corre-
lation with bio7 (annual temperature range), FAW also 
favours locations with high annual temperature. The 
probability of FAW occurrence is high in environments 
where (1) mean annual temperature (bio1) is comprised 
between 19  °C and 23  °C; (2) temperature seasonality 
(bio4) is less than 2.5 and (3) length of the longest dry 
season (llds) comprised between 2.5 and 4.5 (Fig. 6).

Discussion
The FAW is a tropical species mostly adapted to warmer 
parts of the New World [9]. In the current study, we 
modeled its distribution under tropical conditions in 
Eastern DR Congo. The existence of 3 bioclimatic zones 
for FAW was determined in South Kivu. One (zone 3) 
was found to correspond to the highest probability of 
FAW occurrence. Climate change has been reported to 
have different effects on insects, impacting directly their 
life cycles or indirectly their hosts and/or predators [3, 
39]. However, the FAW may benefit from the climate 
change due to its polyphagous feeding behaviour, its 
phenotypic and genotypic plasticity [49]. Also, the adult 

Table 1  Description of bioclimatic zones of South Kivu (Mean ± SE)

SE standard error

Variables Zone 1 Zone 2 Zone 3 Global

bio1 160.82 ± 19.96 227.28 ± 16.12 220.09 ± 18.06 210.53 ± 30.83

bio2 95.55 ± 4.53 106.89 ± 2.10 105.46 ± 4.75 103.93 ± 5.85

bio3 792.26 ± 39.18 857.40 ± 17.18 790.86 ± 35.53 812.91 ± 44.31

bio4 3.931 ± 0.80 2.99 ± 0.09 3.63 ± 0.80 3.48 ± 0.75

bio5 219.70 ± 23.05 288.97 ± 16.19 285.48 ± 18.98 273.40 ± 33.02

bio6 98.69 ± 16.75 164.26 ± 16.41 152.09 ± 17.09 145.34 ± 29.30

bio7 121.00 ± 9.754 124.70 ± 4.00 133.39 ± 4.15 128.06 ± 7.72

bio10 164.05 ± 20.37 229.63 ± 16.14 224.03 ± 18.06 213.81 ± 30.84

bio11 155.27 ± 20.02 223.59 ± 16.35 215.82 ± 18.31 206.19 ± 31.47

bio12 1893.89 ± 149.49 1940.80 ± 147.15 1563.16 ± 167.94 1753.17 ± 239.61

bio13 248.36 ± 27.76 235.78 ± 24.11 198.67 ± 16.41 220.80 ± 30.48

bio14 17.38 ± 8.03 55.42 ± 13.17 21.59 ± 10.16 31.81 ± 19.79

bio15 80.28 ± 11.02 61.72 ± 6.24 63.03 ± 6.53 66.07 ± 10.41

bio16 668.48 ± 65.06 668.73 ± 62.81 549.53 ± 50.97 612.44 ± 83.07

bio17 89.43 ± 35.89 198.67 ± 34.19 93.86 ± 38.22 127.25 ± 61.75

Dem 2197.31 ± 348.68 847.65 ± 283.62 1145.35 ± 326.32 1259.45 ± 582.61

Llds 2.69 ± 0.81 1.26 ± 1.13 3.29 ± 0.59 2.51 ± 1.23

Mi 147.95 ± 23.30 118.39 ± 8.86 98.43 ± 12.58 114.91 ± 23.68

Miaq 29.30 ± 13.16 50.70 ± 8.95 24.02 ± 9.79 33.81 ± 15.77

Mimq 212.43 ± 35.75 160.83 ± 13.39 140.35 ± 15.53 161.54 ± 34.09

Pet 1295.55 ± 100.38 1640.62 ± 65.71 1595.30 ± 92.60 1549.86 ± 155.42

Total area  (km2) 11,411.20 17,293.40 30,389.80 59,094.40
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migratory ability is one more adaptative trait to allow 
moving across regions to several miles (300 miles/gen-
eration in some years) [54, 57]. In an area such as South 
Kivu with an approximate surface area of 69,130  km2, 
the FAW migration would take place very quickly. Out-
breaks of FAW are closely related to climate conditions 
and with good winter and spring conditions [49]. Cokola 
[10] noted that FAW incidence in South Kivu has been 
associated by temperature and rainfall. Moreover, study 
conducted by Liu et  al. [32] founded that land-use was 
more important than climate factors, with larger poten-
tial distributions. In this study, among the 21 used bio-
climatic variables, four of them influenced the potential 
distribution of FAW in the region. It is therefore seen that 
these four variables also play a major role in the spread 
of FAW in South Kivu. Wang et al. [55] modelled the dis-
tribution of FAW through MaxEnt with 19 bioclimatic 
variables related to temperature and humidity of which 
10 influenced the FAW distribution. However, the FAW 
distribution may be influenced by other several non-cli-
matic factors, such as host, natural enemy, management 
level and human activities [24], soil properties, land cover 
and agricultural management interventions (such as use 
of pesticides or fertilizers) [6]. This aspect need to be 
then incorporated into the model. Furthermore, it would 
also be important to model the FAW distribution by inte-
grating local bioclimatic data into the model to minimize 

errors related to imported bioclimatic data. Soria-Auza 
et al. [53] reported that one of the least studied sources of 
uncertainty in species distribution modeling comes from 
the environmental data used to run the models, particu-
larly the climate data, especially in the tropics, where 
comparatively few climatic stations are available. In the 
case of South Kivu province, however, it is difficult to 
obtain sufficient local bioclimatic data given the limited 
number of meteorological stations found in this region.

The accuracy of prediction of FAW MaxEnt model 
showed high values of AUC (Fig.  2) confirming a good 
model performance [33]. Comparing our results with 
other studies, including Wang et  al. [55], an excellent 
AUC was found. For instance, AUC often increases 
with the size of the study area because it contributes to 
include background points that have environmental 
characteristics greatly distant from the species require-
ment, resulting in artificial increase of SDM validation 
[4]. The suitable areas of FAW in South Kivu province are 
divided into two corridors (Fig. 3). The Eastern corridor 
covering the Eastern areas of Kalehe, Kabare, Walungu, 
Uvira and Fizi territories and the Western corridor cov-
ering the Western areas of Kalehe, Kabare, Walungu and 
Mwenga territories, southern Shabunda and north-west-
ern Fizi territories. Infestations are most prevalent in the 
first corridor. Differences in the FAW infestations within 
the said corridor, between the Ruzizi plain (low altitude) 

Fig. 2 Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) value of MaxEnt modeling (100 runs)
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Fig. 3 Distribution of suitable areas of fall armyworm (Spodoptera frugiperda) in South Kivu, DRC. This figure was created by the authors using 
ArcMap version 10.6 (https ://deskt op.arcgi s.com/fr/arcma p/)

https://desktop.arcgis.com/fr/arcmap/
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and Kabare (mid altitude) have been demonstrated [10]. 
According to the modeling realized by Early et  al. [14], 
Sub-Saharan Africa, especially DR Congo, Gabon and 
Cameroon, appeared to have low suitability for FAW. 
Early et al. [14] explain that low suitability in these coun-
tries was more likely because of extensive forest cover. 
This is the case for example, here for Shabunda territory. 
However, this does not mean that pockets of the suit-
able habitats in the cited countries will not be severely 
affected, given the ability of the FAW to travel long dis-
tances [14].

Among the four environmental variables used as pre-
dictors in the FAW MaxEnt model, bio12 (annual rainfall) 
played a major role in the spread of FAW and contributed 
more to run the MaxEnt model (Fig.  5). With the Jack-
knife test for variable importance, the environmental var-
iable exhibited highest gain when used in isolation with 
bio12 (annual rainfall). Day et al. [12] found that rainfall 
in the wettest periods and the coldest annual tempera-
tures were important variables in FAW migration. The 
effects of rainfall on the distribution of FAW have been 
documented. For example, Early et al. [14] reported that 
rainfall have a negative impact on FAW larvae. Further-
more, a suitability map provided by Du Plessis et al. [13] 
demonstrated that natural rainfall and irrigation scenario 
were important variables in FAW distribution. The cold-
est annual temperature and the rainfall during the wettest 
three months were consistently identified by Early et al. 
[14] as the environmental variables that most affected 
FAW distribution. In this work, most suitable habitat for 
FAW was found in places where annual rainfall was less 
than 1600 mm. According to Early et al. [14] and Nagoshi 
et al. [15], FAW was most commonly found in areas with 

very little forest cover, a minimum annual temperature 
of 18–26  °C and with 500–700 mm rainfall in the three 
wettest months. Furthermore, given that variable bio12 is 
strongly negatively correlated with bio7 (annual temper-
ature range), it seems clear that FAW also favours loca-
tions with high annual temperature. Temperature was 
the main environmental factor affecting the growth and 
reproduction of the FAW [8, 25]. FAW was most likely 
to be found in areas characterized by very high annual 
temperature range, very long duration of the longest dry 
season, very high annual moisture index, high maximum 
temperature of the hottest month and very high mean 
temperature of the warmest quarter. The probability of 
FAW occurrence is high in environments where mean 
annual temperature (bio1) is comprised between 19  °C 
and 23 °C. Du Plessis et al. [22] found that the develop-
ment rate of FAW increased linearly with increasing 
temperatures between 18 and 30 °C. Additionally, Wang 
et al. [55] found that when the Mean Temperature of the 
Warmest Quarter varies between 19.15 and 29.73 °C, the 
existence probability of the FAW is higher.

Conclusion
In areas where investigations on FAW invasions remain 
limited, such as in the DR Congo, it is important to model 
its distribution and to detect areas with high infestation 
potential. Based on the obtained results, the South Kivu 
province is a favorable habitat for the development of 
FAW. However, given the rapid spread of the insect and 
the climatic variability observed in the region that favor 
its development and dispersal, it is necessary to pay par-
ticular attention to the management of this species now, 
in order to take effective measures and prevent its further 
spread. At the same time, effective and efficient monitor-
ing systems should be set up in its range to collect field 
data’s and improve further control of this pest.

Methods
Study area and occurrence data collection
This study focused on South Kivu in Eastern DR Congo, 
between 1º36′ and 5º South Latitude; 26º47′ and 29º20′ 
East Longitude. Biological data’s related to FAW occur-
rence were associated to locations with geo-referenced 
coordinates. Occurrence data of FAW were collected 
in Kalehe, Kabare, Walungu, Uvira, Fizi, Mwenga and 
Idjwi territories in collaboration with local farmers who 
observed FAW larvae and reported every related field in 
their localities. All suspected cases of FAW attacks were 
checked for confirmation through field surveys. To con-
firm that the larvae observed were indeed those of FAW, 
we had considered the morphological characteristics 
of FAW larvae as described by EPPO [16] and Sharana-
basappa et  al. [26]. Geographic coordinates of infested 

Fig. 4 Contribution (a) and Permutation importance (b) of variables 
used as predictors in the fall armyworm (Spodoptera frugiperda) 
MaxEnt model. bio1: mean annual temperature; bio12: annual rainfall; 
bio4: temperature seasonality; llds: longest dry season duration



Page 8 of 13Cokola et al. BMC Ecol           (2020) 20:66 

areas were selected only after positive FAW confirma-
tion. Presence records were collected between February 
2018 and September 2019 in 156 fields where FAW has 
been reported. Geographic coordinates on latitude and 
longitude in the WGS84 system were recorded using GPS 
Garmin 64 s. The map representing the points of occur-
rence is illustrated in Fig. 7.

Environmental variables
In this study, we used elevation and potential evapo-
transpiration data’s combined with 19 bioclimatic vari-
ables. Altitude (Digital Elevation Model ASTERDEM) 
with 30  m spatial resolution was obtained from USGS 
database (https ://earth explo rer.usgs.gov) and the biocli-
matic data’s were collected from the Africlim database 
(https ://www.york.ac.uk/envir onmen t/resea rch/kite/
resou rces/). They were used to build the species distribu-
tion model in order to find the FAW suitable areas. Afri-
clim provides high-resolution climate data’s for Africa. 
Bioclimatic data consisted of 21 environmental vari-
ables (Table 2) that were obtained from interpolations of 
monthly averages of precipitation and temperature tak-
ing into account climate data collected over long periods 
of time (1950—2000) [23]. The Africlim spatial database 
includes monthly grids of temperature and rainfall, deriv-
ing from bioclimatic summary variables such as moisture 
indices and dry season length. All environmental vari-
ables were in raster format with a 30 arc seconds reso-
lution (0.93  km × 0.93  km ≈ 0.86  km2  at the equator). 
Both ArcGIS Desktop 10.6 and QGIS 3.10 were used to 
process the spatial data: data extraction to the South Kivu 

province extent, data management in geographic coordi-
nates (datum: WGS84) and resampling all the raster lay-
ers to the same resolution for preparing the maps.

Bioclimatic zonation
Initially, all the environmental variables (n = 21) were 
clipped to have only spatial data corresponding to the 
extent of the South Kivu province. Then, geographic 
coordinates of the raster pixels centroids were used 
to extract the values for each variables corresponding 
to each pixel in order to produce a dataset to be used 
to delineate the bioclimatic zones. The generated bio-
climatic dataset was used by processing the Principal 
Component Analysis (PCA) procedure of the Facto-
MineR [31] package of the R software version 3.5.3 
[48]. Based on Kaiser’s criterion, only the first 5 prin-
cipal components were selected for further analysis. 
The loadings of pixels centroids on the first 5 principal 
components were then used to perform a hierarchical 
ascending clustering through the HCPC (Hierarchi-
cal Clustering on Principle Components) procedure of 
the FactoMineR package. Hierarchical clustering was 
realised using the Euclidean distance as the metric and 
Ward’s aggregation method to determine the optimal 
number of clusters to be formed. The Kmeans proce-
dure was then used to consolidate the obtained clus-
ters. Clustering results were then imported into QGis 
3.10 to produce a bioclimatic zone map of the South 
Kivu province.

Selection of environmental predictors
Prior to distribution modeling, all the environmental 
variables were subjected to a correlation test in order to 
select those susceptible to be used as predictors of the 
FAW distribution. Consequently, only variables with 
pairwise Pearson correlation coefficients falling under 
the interval of ]-0.75, 0.75[ were selected for modeling in 
order to control for multicolinearity problem in environ-
mental predicators [58].

Species distribution modeling
MaxEnt (Maximum Entropy) program 3.3.3 [43, 44] 
was used to establish current climate envelope for FAW 
natural occurrence in South Kivu. MaxEnt is a common 
species distribution modeling (SDM) tool used for pre-
dicting the distribution of a species from a set of records 
and environmental predictors [19]. The MaxEnt tech-
nique uses known occurrence locations (presence only 
data) and a set of gridded environmental layers to pro-
duce an output map of the predicted ecological niche of 
the species on a scale of 0 (lowest suitability) to 1 (high-
est suitability). MaxEnt is a modeling technique that 

Fig. 5 Jackknife test of variables’ contribution in modeling 
Spodoptera frugiperda habitat suitability distribution in South Kivu: 
a without variable, b with the variable only. bio1: mean annual 
temperature; bio12: annual rainfall; bio4: temperature seasonality; 
llds: longest dry season duration

https://earthexplorer.usgs.gov
https://www.york.ac.uk/environment/research/kite/resources/
https://www.york.ac.uk/environment/research/kite/resources/
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Fig. 6 Responses of variables to fall armyworm (Spodoptera frugiperda) habitat suitability. These curves show how each environmental variable 
affects the MaxEnt prediction. They also show how the predicted probability of presence changes as each environmental variable is varied, keeping 
all other environmental variables at their average sample value (left side) or a MaxEnt model created using only the corresponding variable (right 
side)
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measures entropy, a measure of ‘how much choice’ is 
involved in the selection of an event [44, 45]. MaxEnt is 
a general-purpose method for characterizing probability 
distributions from incomplete information. In estimating 
the probability distribution defining a species distribu-
tion across a study area, MaxEnt formalizes the principle 
that the estimated distribution must agree with every-
thing that is known (or inferred from the environmental 

conditions where the species has been observed) but 
should avoid making any assumptions that are not sup-
ported by the data [44]. The approach corresponded to 
find the probability distribution of maximum entropy (a 
distribution that is most spread-out, or closest to uni-
form) subject to constraints imposed by the information 
available regarding the species observed distribution and 
related environmental conditions across the study area 

Fig. 7 Occurrence records of fall armyworm (Spodoptera frugiperda) in South Kivu, DRC. Each point represents a maize field in which fall armyworm 
larvae were detected and collected. This figure was created by the authors using ArcMap version 10.6 (https ://deskt op.arcgi s.com/fr/arcma p/)

https://desktop.arcgis.com/fr/arcmap/
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[44]. MaxEnt was presented as one of the highest per-
forming SDM methods [7].

We ran 100 models, each trained to a randomly selected 
bootstrap process of the occurrence dataset. Prediction 
map from each model has been generated in order to 
calculate the mean prediction and standard deviation of 
each pixel. Model predictions were imported into ArcGis 
10.6 to generate maps of the FAW occurrence probability 
in South Kivu.

Model evaluation
In this study, the Receiver Operating Characteristic 
(ROC) curve method was used to assess the model’s 
performance [11, 40, 42]. One of the parameters used 
to evaluate predictive capacity of a model generated by 
MaxEnt is the area under the curve (AUC) or under the 
ROC curve. AUC can then be interpreted as the like-
lihood that a randomly selected point of presence is 
located in a raster cell with a higher probability of species 
occurrence than a randomly generated point [44]. The 
AUC is an effective threshold-independent index that can 
evaluate a model’s ability to discriminate presence from 
absence (or background) occurrence. Also, the AUC is 
not affected by collinearity and spatiotemporal autocor-
relation [11]. The closer AUC is to 1, the more predictive 

is the model. Random distribution has an AUC of 0.5. 
Overall value of AUC can be considered in evaluating the 
final model. AUC values of 0.5–0.7 indicate low accuracy, 
0.7–0.9 useful applications and > 0.9 high accuracy [33].

Assessment of variable contribution
The Jackknife procedure was performed on climate vari-
ables to determine the major contributors to the pre-
diction model. The model evaluation was completed by 
an assessment of the contribution of each variable used 
in the model based on Jackknife test. However, more 
detailed evaluation can be carried out during construc-
tion of the model by analyzing AUC obtained in differ-
ent Jackknife test scenario. Then, AUC values obtained 
from a single variable or with the global models (from 
which a variable had been removed purposively) can be 
compared. The main goal in such situation is to identify 
which variable, when added or removed from the model, 
mainly modify the AUC value. In this study, the jackknife 
method was used to analyze the effects of environmen-
tal variables on model results in order to select dominant 
factors. Specifically, the process involves 3 independent 
steps:

1. Calculating the training gain for the model with only 
one variable. Higher training gain indicates that the 

Table 2 Environmental variables used to model Spodoptera frugiperda (FAW) distribution in South Kivu

Environmental and bioclimatic parameters Code Units

Mean annual temperature (* 10) bio1 °C

Mean daytime temperature range (monthly average) (* 10) bio2 °C

Isothermality (bio1/bio7) * 100 bio3 –

Temperature seasonality (standard deviation * 100) bio4 °C

Maximum temperature of the hottest month (* 10) bio5 °C

Minimum temperature of the coolest month (* 10) bio6 °C

Annual temperature range (bio5-bio6) (* 10) bio7 °C

Mean temperature of the warmest quarter (* 10) bio10 °C

Mean temperature of the coldest quarter (* 10) bio11 °C

Annual rainfall bio12 mm

Rainfall during the wettest month bio13 mm

Rainfall during the driest month bio14 mm

Rainfall seasonality bio15 mm

Rainfall in the wettest quarter bio16 mm

Rainfall in the driest quarter bio17 mm

Longest dry season duration llds –

Annual moisture index mi –

Moisture index of the dry quarter miaq –

Moisture index of the wet quarter mimq –

Potential evapotranspiration pet mm

Elevation dem M
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variable has high prediction power and contributes 
greatly to species distribution;

2. Calculating the training gain for the model with-
out a specific variable and analyzing the correlation 
between the removed variable and the omission 
error. If the removal of an environmental variable 
leads to a significant increase in the omission error, 
it indicates that the variable has a significant effect on 
the model’s prediction;

3. Calculating the training gain for the model with all 
variables.
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